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ABSTRACT

The singular value Bode plot of return difference and loop

gain matrices have emerged as useful indicators of

multivariable robustness. The H, and H2 control theories

provide a systematic procedure for shaping the singular value

loop gains of a multivariable feedback control system.

It is shown that H, control theory, using specified

performance objectives and stability constraints, is effective

in synthesizing a stabilizing controller for the statically

unstable longitudinal dynamics of the X-29. H. control

synthesis also demonstrates a good ability to cope with a true

multivariable design problem such as the multiple,

independently controlled surfaces of a super-maneuverable

aircraft. However, it is also shown that the control surface

deflections and control rates necessary to effect the

specified performance levels exceed the performance

capabilities of the X-29's actuators.

A work-around to the limited actuator performance is

provided by penalizing the control input vector more heavily

during the problem formulation. This approach, while reducing

the actuator performance requirements, results in a limited-

performance X-29.
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I. INTRODUCTION

System performance, specifically a system's response to

input commands, is of primary concern in the design of a

feedback controller. Of equal importance in controller

synthesis are stability margin and the remaining performance

characterizations such as disturbance attenuation and

sensitivity. Stability margin is a relative measure of a

control system's stability, i.e., defining the smallest

perturbation or modeling error that will cause the control

system to become unstable. Disturbance attenuation and

sensitivity refer to a control system's ability to reduce or

limit the effects of disturbances and plant variation,

respectively, on the plant outputs. The analysis of single-

input single-output (SISO) systems has the advantage of

classical techniques, including Nyquist diagrams, Bode plots,

and root locus plots, to measure the gain and phase margins

and system performance. Attempts have been made to extend

these classical SISO theories to the multi-input multi-output

(MImO) case. Often, however, these multivariable

generalizations do not accurately represent the stability

margin and performance characterizations of the MIMO system.

A prime example is the multivariable generalization of the

Nyquist Theorem. Although the stability of a MIMO system can



be determined from a multivariable Nyquist diagram, the

classical gain and phase margins are not meaningful.

It has, therefore, become necessary to redefine the

measures of multivaible stability margin and system

performance. In recent years a number of control theorists,

including Doyle, Safonov, MacFarlane, and Lehtomaki among

others, have conducted considerable research on the analysis

of multivariable system robustness [Refs. 1, 2, 3, 4, 5]. As

a result of renewed concern with such multivariable feedback

issues as stability margin, disturbance attenuation, and

sensitivity, singular value Bode plots of return difference

and loop gain matrices have emerged as useful frequency domain

indicators of multivariable robustness [Refs. 1, 3]. The term

robust or good robustness is used to describe a multivariable

feedback control system characterized by a large csability

margin, good disturbance attenuation, and low sensitivity

[Ref. 3].

The development of H., frequency-weighted linear quadratic

guassian (LQG) (or H2), and LQG loop transfer recovery control

theories, as well as the numerical optimization technique

investigated by Gordon [Ref. 6], have made singular value loop

shaping a reasonable if not routine procedure. By singular

value loop shaping is meant the purposeful manipulation of a

feedback control system's loop gains over a specified

frequency bandwidth in order to improve performance and

stability margins. H and H2 theories provide direct, reliable

2



techniques for synthesizing a controller which satisfies

singular value loop shaping specifications. The LQG loop

transfer recovery theory provides a less direct yet effective

means of achieving singular value loop shaping requirements.

The numerical optimization procedure is a relatively direct

design method which manipulates the system feedback gains as

design variables [Ref. 6:p. 4]. This manipulation is

conducted such that singular value loop shaping requirements

are met. [Ref. 7]

Most published H, design examples have been textbook

studies [Ref. 8]. It is the purpose of this thesis to assess

the effectiveness of H. control theory in synthesizing a

stabilizing controller for a reduced order, linearized model

of the X-29 longitudinal dynamics. Chapter II discusses

multivariable feedback properties, the role of the return

difference matrix in evaluating these feedback properties, and

singular value loop shaping. H. control theory and design

implementation are presented in Chapter III. The results of

the H. synthesis of a controller for the X-29 longitudinal

dynamics are discussed in Chapter IV. Conclusions are

presented in the Chapter V.

3



II. FEEDBACK PROPERTIES OF MULTIVARIABLE SYSTEMS

The feedback properties of a linear system include

stability and stability margin, sensitivity to plant and

controller variations, and disturbance attenuation. These are

the same system properties used in the Introduction to define

the robustness of a multivariable feedback system, and can be

altered only through the use of feedback. The

characterization of a system's response to commands is omitted

from this list of feedback properties since command response

can be altered by prefiltering of the command signal. That

is, feedback is not required for improving command response.

This is not to imply that command response can not be

controlled through feedback. However, purposeful manipulation

of command response is best performed in the feedforward path.

[Ref. 3]

Throughout this thesis, vectors are denoted by bold lower

case letters while matrices are indicated by bold upper case

letters.

A. RETURN DIFFERENCE MATRIX

The return difference matrix is fundamental in the measure

of a system's feedback properties and, therefore, to its

robustness. Originally associated with SISO systems, the

return difference concept has been extended to a MIMO

generalization as discussed by Doyle and Safonov [Refs. 3: 3].

4



Consider the feedback configuration presented in Figure

2.1, and let G(s) and F(s) be matrices of timte invariant

transfer functions for the system plant and controller,

respectively. With the loop broken at the plant output, the

transfer matrix

I + G(s)F(s) (2.1)

U1  y U2
F(s) G(S) --

A 2 1

Figure 2.1 Return Difference Illustration

is referred to as the output return difference matrix. This

definition is more apparent if an external input vector u2 is

injected at point 1 of the loop. The transformed signal y

returned at point 2 is

y(s) = -G(s)F(s)u 2(s), (2.2)

5



and thl difference between the injected input and the returned

output vector is

U2 (S) - y(s) [I + G(s)F(s)]U 2 (S). (2.3)

If this loop is broken at the plant input, the resulting input

return difference matrix is

I + F(s)G(s). (2.4)

The inverse-return difference matrices are defined for the

output and input nodes as

I + (G(s)F(s)) 1  (2.5)

and

I + (F(s)G(s))I , (2.6)

respectively. Finally, the associated output and input loop

gain matrices, also called return-ratio matrices, are

G(s)F(s) (2.7)

and

F(s)G(s) , (2.8)

respectively. [Refs. 4, 9:p. 45]

B. MATRIX NORMS AND SINGULAR VALUES

The quantification of feedback qualities is necessary so

that alternative feedback designs can be directly compared in

the selection of an optimal design. To quantify the feedback

6



properties of a syst2m, a frequency-dependent, scalar measure

of the return difference matrix size is required. For SISO

systems the appropriate measure of the return difference

matrix is its magnitude, i.e., 1i + g(jw)f(jw)l. This is

recognized as the distance to the critical point of the SISO

Nyquist diagram for additive perturbation, and is a measure

of the relative stability of the system.

The notion of matrix size is extended to multivariable

systems through matrix norms. The spectral norm, routinely

used in the analysis of MIMO systems, is defined as

IIAII 2 = max )i/(AHA) = a ×(A) (2.9)
i

where X, is the ith eigenvalue of AHA, and AH refers to the

complex conjugate transpose of matrix A. The singular values

of a complex nxn matrix A, denoted ao (A) , are the non-negative

square roots of the eigenvalues of AHA, that is

0 = ) i(AHA) (2.10)

where a : o2 _ ... ! on . The maximum and minimum singular

values of A are denoted by cax and minf respectively.

Some useful properties of matrix singular values are [Ref.

5]:

1. Cma x (A) = max

2. omin(A) = min

7



3. cmi n(A) :5 l~(A) C,, _ x(A) 1 1

4. if A-1 exists, Omin(A) - and ,),(A) -C.. (A I  Coj (A I

5. c.(rA lalo,,(A)

6. cma (A + B) _ oa(A) + oax(B)

8. max( c,,,,(A) , Cm),(B) ) :5 C ([AB )

_< J2 max{oma(A), om (B)).

Properties 1 and 2 are significant as they establish the

maximum and minimum gains of the matrix, respectively. The

minimum singular value, property 2, is also used to measure

a matrix's nearness to singularity. Finally, the

multivariable generalization of return difference matrix size

is

ai[I + G(jw)F(jw)] (2.11)

or

aCiI + (G(jw)F(jw)) "1] (2.12)

for additive and multiplicative perturbations, respectively.

The significance of Equations (2.11) and (2.12) will be fully

explored in the following section.

C. MULTIVARIABLE ROBUSTNESS AND SINGULAR VALUE LOOP SHAPING

Large loop gains, i.e., G(s)F(s) >> 1, are necessary to

ensure good performance from a feedback control system.

8



However, the need for a system's tolerance to plant

uncertainties restricts the frequency r~nge over which the

loop gains are permitted to be large. This tolerance to

uncertainties, or modeling errors, is a measure of a system's

relative stability. Therefore, the design of a feedback

control system requires a trade-off between performance and

stability robustness. These concepts are fully developed in

this section.

Consider the multivariable feedback control system

presented in Figure 2.2. Included are the transfer function

matrices for the plant, G(s) , and stabilizing controller,

F(s), which are driven by the command, r, disturbance, d, and

sensor noise, r, vectors. In this configuration, d is

represented as the equivalent disturbance at the controlled

or output variable vector, y [Ref. 9:pp. 168-174]. The

feedback properties of this system, i.e., the multivariable

stability margins and performanca, can be measured using the

closed loop transfer function matrices from the driving

inputs, r, d, and 7, to each of the outputs, y and the control

vector, u. Namely, these matrices are

S(s) = [I + G(s)F(s)]1  (2.13)

T(s) = G(s)F(s)[I + G(s)F(s)] = I - S(s) (2.14)

and

N(s) = F(s)[I + G(s)F(s)]- (2.15)

9



d

r + u V y
b-Z - - F(s) -- G(s) -1-E
A

Figure 2.2 Feedback Control System

where S(s), the sensitivity function, represenLs the transfer

functiii matrix from d to y, T(s), the complementary

sensitivity function, represents the transfer function matrix

from r or -7 to y, and N(S) represents the transfer function

matrix from r to u (Ref. 7]. The fundamental relationships

between system performance and the above matrices can be

realized by the following representations:

1. input-output behavior [Ref. 1]:

Y(s) = G(s)F(s)[I + G(s)F(s)]1(r-7)

+ [I + G(s)F(s)] Id (2.16)

e =r-y

= [I + G(s)F(s)] (r-d) + G(s)F(s) [I + G(s)F(s) ]'77

= S(s)(r-d) + T(s)77 (2.17)

10



2. system sensitivity to variations [Ref. 9:p. 180]:

AT(S) = [I + G(s)F(s)] 'AG(s) F(s)[I + G(s)F(s)] 1

= s(s)AG(s)N(s). (2.1B)

In Equation (2.18), AT(s) denotes the changes in the closed

loop system as caused by plant variations or additive

uncertainties, AG(s), where

d(s) = AG(s) + G(s). (2.19)

Equation (2.17) shows that system errors resulting from

commands and disturbances can be made small by making the

sensitivity function small or the return difference matrix,

[I + G(s)F(s)], large. Equation (2.18) shows that closed loop

changes, or loop sensitivity, is improved under the same

conditions provided G(s) z G(s) [Ref. 9:p. 180]. Thus, the

disturbance and sensitivity performance objectives of a

multivariable feedback system can be represented in the

following manner using the matrix singular values previously

discussed:

Omax[I + G(jw)F(j w) -W1 ' (jw) I (2.3)

or equivalently, using singular value property 4,

omin[I + G(j w)F(jw) ] I W (jw) (2.21)

where IW1(jw) I is a scalar function representing the desired

disturbance attenuation and sensitivity factor. Equation

(2.21) states that good feedback performance is achieved with

11



large loop gains. This follows from the fact that the size

of the return difference matrix approximates the loop gains

whenever the loop gains are large:

Umin[ I + G(S)F(s)] min(G(s)F(S) (2.2)

for

Omin(G(s)F(s)) >> 1. [Refs. 1, 7]

While large loop gains over a specified frequency range

improve system performance with respect to disturbances and

plant variations, they cause increased errors for large sensor

noise inputs, n. As seen in Equation (2.16), large loop gains

result in G(s)F(s)[I + G(s)F(s)] " , i.e., T(s), near one.

Therefore, sensor noise is passed through to the system

outputs over the frequencies that the loop gains are large.

It is obvious that a performance tradeoff must be made in the

feedback design. [Refs. 1, 9:pp. 174-178]

A more crucial limitation to high loop gains results from

the need for tolerance to uncertainties. These uncertainties

are due to deviations of the physical plant from its linear,

time invariant model, and restrict the frequency range over

which the loop gains may be large. The magnitude of the

tolerance to these uncertainties is a measure of the stability

margin enjoyed by the system. Representation of unstructured

uncertainty, that uncertainty which is characterized solely

by its magnitude, depends on the errors the molel is expected

to make. However, a common method of representation is the

12



multiplicative form. In this form, the true plant matrix

G(j) is given as

G(jw) = G(jw)[I + Em(j)] (2.23)

with

Em(jcL) G I(jw) [G(jo) - G(jw)]

and

Ox(Em(j ()) < IW3 (jU) V W 2 0

where Em(jw) is the relative (multiplicative) modeling error,

G(jw) the nominal plant, and IW3 (jW) I a scalar function which

serves as an upper bound on the relative error. That is,

IW3(JW) I represents the size of the largest multiplicative

modeling error anticipated for the respective frequency w.

The use of multiplicative error is preferable over absolute

(additive) modeling error, denoted by Equation (2.19), since

relative uncertainty applies equally to the compensated system

G(s)F(s) and the raw plant G(s). This is not the case with

absolute modeling error. [Refs. 1, 5:pp. 73-85 and Refs. 7,

10:pp. 19-22]

The properties of the bounding function Jw3(j) I are such

that it is small (<< 1) at low frequencies and increases to

one and above at higher frequencies (Figure 2.3). The maximum

frequency w at which the bounding function is less than or

equal to unity (the crossover frequency) is referred to as the

multiplicative robust frequency, and is denoted by wr" As

will be discussed later, this frequency provides an upper

13



Magnitude W -

Figure 2.3 Properties of the Relative Error Bounding Function

constraint on the frequency band of the control system. A

final comment concerning 1W3 (jW)I is that this bound assumes

a worst case for the magnitude of the unstructured uncertainty

that applies to all system loops. [Refs. 1, 7]

Given the nominal plant model G(s), the performance

objectives, and knowledge of the unstructured uncertainties,

the problem is to synthesize a controller such that [Ref. 1]

1. the feedback control system, G(s)F(s) [I + G(s)F(s)] is
stable,

2. the stability margin is sufficient to cause stability
of the actual feedback control system, G(s)F(s)[I +
G(s)F(s). , for the largest anticipated relative error,
Em(S) , and

3. the performance objectives are achieved considering the
largest anticipated E,(s)

14



These three conditions can be viewed as performance and

stability margin specifications in terms of singular value

loop shaping requirements [Ref. 7].

Condition 1 requires fulfillment of the multivariable

generalization of the Nyquist Theorem rRef. 5:p. 59 and Ref.

6:p. 27]. The satisfaction of condition 2 is assured if and

only if

u.){G(jw)F(j)[I + G(jco)F(jL))] "') < IW3 -1 (jw) I (2.24)

or equivalently

Omin[I + (G(jw)F(jw)) " I ] > IW3 (jW) I (2.2)

Equation (2.24) states that in order for a feedback system to

be stability robust, its loop gains must be small when the

unstructured uncertainty magnitudes are large, i.e.,

.3(j(,) >> 1. This follows from the fact that the

complementary sensitivity function T(s) approximates the loop

gain as the loop gain becomes small:

0, G(s)F(s) [I + G(s)F(s) c, ,,(G(s)F(s)) (2.26)

for

Oma(G(s)F(s)) << 1.

[Refs. 1, 5:pp. 76-84 and Ref. 7]

Equations (2.20) anu (z.21) have already established the

requirements for meeting the performance objectives as

stipulated in condition 3. However, to account for the

relative modeling error encountered at low frequencies,

15



I W,(j o) is now considered to include the unstructured

uncertainty for 1W3(jw) < 1. Therefore, restating the

performance objective requirement:

Omin(I + G(jw)F(j ) ] > W,(jo) I (2.7)

for all w such that

jW3 (jW) I < 1 and omin(G(jW)F(jw)) >> 1

[Refs. 1, 7].

The singular value loop shaping requirements established

by the performance and stability bounds are depicted in Figure

2.4. The design of a MIMO feedback control system can be

summarized as the use of high loop gains at low frequencies

Omax (GF)

0 dB
PERFORMA4CE STABI LITY
BOUND W1  BOUND W

/

0 min (GF)

Figure 2.4 MIMO Singular Value Loop Shaping Requirements
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where performance requirements are defined and the use of low

loop gains at high frequencies where stability robustness

constraints lie. While the low frequency bound on the loop

gains is desirable to meet specified performance objectives,

the upper frequency bound is a hard requirement. For if the

uncertainties are unstructured and Equation (2.25) is

violated, then there exists a modeling error Em(S) permitted

by Equation (2.23) for which the system is unstable [Ref. 1].

As alluded to earlier, the robust frequency wrm is an upper

bound on the bandwidth w. of a multivariable control system

where wB is the frequency range for Omin(G(S)F(s)) >> 1. Thus

permitting the loop gain to be greater than unity above wm

violates the required condition for stability of the actual

feedback system. The roll-off (attenuation) rate of the loop

gains, Omin(G(s)F(s)) and Omax (G(s)F(s)), determine the severity

of the wo constraint. Large roll-off rates permit a wider w.

However, steep loop gain roll-offs are achieved at the expense

of small cmin[I +G(s)F(s)] and Umin[I + (G(s)F(s)) I ] values when

the loop gains are approximately unity. This means both

performance and stability margins are poor at the loop gain

cross over frequency. This correlates with classical SiSO

analysis that suggests the slope of Bode magnitude plots be

more gradual than -40 dB/decade to ensure an adequate

stability margin [Ref. ll:p. 433]. [Refs. 1, 7]

To better appreciate the design tradeoff required to

ichieve both performance objectives and stability robustness

17



requirements, it is helpful to observe the algebraic relation-

ship between omin[I + G(s)F(s)] and Omin[I + (G(s)F(s)) -]. From

Equations (2.25) and (2.27) it is seen that the bounds on low

and high frequency unstructured uncertainty, as well as that

on performance, become less restrictive if both of the above

singular values can be made as large as possible.

Unfortunately, these return difference quantities are related

so both cannot be made large simultaneously:

[I + G(s)F(s)]1 + [I +(G(s)F(s)) ] - (2.)

equivalently

S(s) + T(s) - I.

The bounded region of Figurc 2.5 shows the allowable values

of the minimum singular values of the return difference and

the inverse return difference matrices. When the loop gains

ar_ large, i.e., cmin(G(s)F(s)) >> 1 at low w,

Omin[I + G(s)F(s)] >> 1 or S(s) - 0

while

amin[I + (G(s)F(s)) I ] -" 1 or T(s) - I

Conversely, when the loop gains are small, i.e., cma(G(s)F(s))

< 1 at high w,

Omin[I + (G(s)ls)) ] >> 1 or T(s) ' 0

while

Gmin[I + G(s)F(s)] - 1 or S(s) - I.

[Refs. 3, 5:pp. 89-91]
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amin[ I + (GF) "']

2

1 2 amin[I + GF]

Figure 2.5 Relationship Between cin[I + G(s)F(s)] and

Omin[I + (G(s)F(s)) "]

Finally, while Omin[I + G(s)F(s)] and cmin[I + (G(s)F(s)) "I

are multivarible generalizations of SISO performance and

stability margin concepts, it is important to note that these

multivariable return difference singular values measure the

uncertainty tolerances at the plant outputs only (see the

development of Equations (2.1) and (2.4)) . In order to

measure the performance and relative stability at the plant

inputs, it is necessary to evaluate amin[I + F(s)G(s)] and

Gmin[I + (F(s)G(s)'1j.
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III. H. CONTROL DESIGN

H. control theory provides a very powerful and direct,

iterative procedure for the synthesis of a feedback controller

designed to meet singular value loop shaping requirements.

Its capabilities extend across the full range of performance

and stability loop shaping objectives that can be formulated

within the singular value Bode plot tramework. The stanclara

configuration of an H. problem is presented in Figure 3.1.

The objective is to design a controller F(s) in state space

form that stabilizes the augmented plant P(s) while satisfying

specified performance and stability margin requirements as

discussed in Chapter II. [Refs. 8, 12]

Ul • Y1
P(s)

U 2  Y2

F(s) .

Figure 3.1 Standard H, Small Gain Problem
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This chapter briefly discusses the three major steps in

the H, design procedure; the formulation of an H, control

system problem, the selection of weightings to achieve design

objectives, and the synthesis of an H, controller [Ref. 8].

In addition, a comparison is made among LQG, H2, and H. control

syntheses.

A. PROBLEM FORMULATION

Consider the problem of designing a feedback controller

F(s) for a multivariable plant with a transfer function matrix

G(s) where G(s) = C(sI-A) B+D. The requirements for

performance and stability robustness are defined by Equations

(2.27) and (2.25), respectively, in terms of the system's

return difference matrices. These requirements are redefined

here in terms of the sensitivity S(s) and complementary

sensitivity T(s) functions as

1
I ((J)) I <  WC (3.1)

Omax(S (jG))

and

c x(T(jw)) W3 1 (jW)I W > C (3.2)

where wc and wc are the respective 0 dB crossover frequencies

of 7W1 and W3- and 7 is a positive scalar constant. Gamma (y)

is added to facilitate iterative attenuation of the

sensitivity function during design implementation. [Ref. 12]
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Within the framework of H. control theory, the

requirements of Equations (3.1) and (3.2) can be combined into

a single infinity norm specification as

lIT, 1,l. - 1 (3.3)

where

Tylu I  =3 (3.4)
W3T

Tylu1 (s) is the closed loop transfer function of the augmented

feedback control system shown in Figure 3.1 from input u1 to

output yl. The H, norm of a transfer function matrix K(s) is

denoted in terms of its frequency-dependent singular values

oi (jw) as

IIKII. = sup oC (K(ju)) (3.5)

where "sup" or "supreme" refe; to the least upper bound [Ref.

7]. Therefore, the H, small gain problem ITYlu 111. _< 1 states

that the maximum singular value of Tylu 1(s), as defined in

Equation (2.9), is to be less than or equal to one for all

frequencies w. As a consequence of singular value property

8, i.e.,

1A A
o: _< max(c ,(A) , ,,(B)  c,,,,/2 B B
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Equation (3.4) approximates the requirements of Equations

(3.1) and (3.2) to within a factor of 12, or 3 dB [Refs. 7,

12].

The development of Tylu I can be shown with the plant G(s)

augmented by the weighting functions yW, W2 , and W3 as

presented in Figure 3.2. As evident from the figure, -yWI

weights the error signal e, W2 weights the control inputs u,

and W3 weights the plant outputs ylc. The area enclosed by

asterisks is P(s), the augmented plant, previously shown in

Figure 3.1 where

P11 P 12P(s) = I (3.6)
P21 P 2 2

or

-tWI -fW 1 G

0 w2
P(s) = (3.7)

0 W3G

I -G

Given an input/output relationship of the augmented plant P(s)

as

Y1 P11 P12 Ul (3.8)

Y2 P21 P22 U2
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AUGMENTED PLANT P(s)

= W2  Yb Y1

+ * Yl

u 1 Z*~ e G(s)

U 2 **

* * 2

CONTROLLER

F(s)

Figure 3.2 Augmented Plant

it is seen that

Y1 P11u1 + P 12u2

and

Y= P1 + P 22u2. (3.9)

From Figure 3. 2, u2 may be expressed as

U2 = FY2  (3.10)

permitting y1 to be written as

Y= Pliul + P 12FY2  (3.11)
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Putting Y2 in terms of ul, F, and Pij and substituting into

Equation (3.11) gives

y1

Ty1ul- - P1 1  + P 12F(I - P 22F) - ,P 21
"  (3.12)

U1

Substitution of the appropriate Pij elements from Equation

(3.7) into Equation (3.12) results in

.)W1S

Tylu I  W 2N (3.13)

W3T

Ignoring the W2 weighting function gives Equation (3.4). The

W2 function can be used to weight or penalize the control

input u to the plant G(s).

The augmented plant P(s) has a state space realization of

[Ref. 7]

A BI B2

P(s) = C1  D11 D12  (3.14)

C2  D21  D22

By putting each weighting function and the plant G(s) from

Figure 3.2 into standard state space form, i.e.,
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x = Ax + Bu

y = Cx + Du,

Equation (3.14) may be represented as

AG 0 0 0 0 BG

-BwlCG Awl 0 0 BWl -BwlDG

0 0 A 2 0 0 BW2

BW3 CG 0 0 AW3  0 BW3DG
P(s) =

-DwICG C . 0 0 DWl -DwlDG

0 0 CW2 0 0 DW2

Dw3CG 0 0 CW3 0 DW3DG

-C G 0 0 0 I -D G

(3.15)

As is apparent from Equation (3.4), the closed loop

transfer function Ty 11(s) is partitioned into submatrices

representing the performance and stability robustness

requirements. The weighting functions 7W1 and W serve as low-

pass or high-pass filters in order to emphasize or de-

emphasize, as appropriate, the maximum singular values of

Tylu1(s ) . These weighting functions are applied over the range

of frequencies necessary to achieve the desired performance

objectives while meeting design constraints [Ref. 8].

Therefore, the control problem defined by the singular

value loop shaping requirements of Equations (3.1) and (3.2)
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is realized with the solution of the H, small gain problem

(Figure 3.1) [Ref. 7]:

Given a transfer function matrix P(s), find a stabilizing
controller F(s) such that the closed loop transfer
function Tylu 1(s) is internally stable and its infinity
norm is less than or equal to one:

IIT 1% ++(Jw) I. :5 1. (3.3)

The compensated system shown in Figure 3.1 is said to be

internally stable if the A matrix of the augmented plant P(s)

is stable. In other words, with the external input ul equal

to zero, all states of the P(s) and F(s) transfer function

matrices will asymptotically go to zero for any initial

condition [Ref. 8]. As indicated by Francis [Ref. 13:pp.34-

35], a sufficient condition to stabilize P(s) is for F(s) to

stabilize P22(s).

In general, the solution to the H, small gain problem is

not unique since a number of stabilizing controllers will

satisfy Equation (3.3). Conversely, a solution to the small

gain problem does not exist for every P(s) due to violation

of well-posedness conditions or infeasible singular value Bode

plot specifications. In order for an H. stabilizing

compensator to exist, it is necessary for (A,Bl) and (A,B)

to be stabilizable and (C1 ,A) and (C2,A) to be detectable.

Additionally, for the infinity norm specification of Equation

(3.3) to be realized, Ty,,,(s) must have no eigenvalues on the

imaginary jw axis. If such poles exist then !T~lU IK > 1.

Finally, it is necessary for the D 12 and D21T submatrices of
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Equation (3.14) to have full column rank. The D12 submatrix

physically weights the plant's control inputs. That is, the

matrix [D12TD12] is comparable to the LQG control weighting

matrix R of the full state cost function. A full column rank

D12 matrix ensures all control inputs are weighted, thereby

eliminating intinite impulses. The W2 weighting function can

be used to ensure D,2 is full column rank as is evident in the

augmented plant P(s) state space realization, i.e., Equation

(3.15). [Refs. 7, 14]

The software program used to solve the H, control problem

outlined in the following chapter is hinf which is included

in the Matlab Robust-Control Toolbox package. Hinf employs

a variant of a two Riccati formula of Doyle et al. The

advantage of using hinf to solve the small gain problem is

that the two Riccati formula eliminates the lengthy and

numerically sensitive model reduction work characteristic of

earlier algorithms. The H. controller produced by hinf has

the same number of states as the augmented plant P(s). [Ref.

7]

B. SELECTION OF WEIGHTS

The weighting functions jW1 and W are transfer function

matrices whose diagonal elements are frequency-dependent

constants. The size of these weighting matrices is consistent

with the number of plant output states. As the weighting

functions act as filters, their design parameters irclude
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gain, corner frequency, attenuation, and order. The goal in

the selection of these design parameters is to achieve small

singular values of the sensitivity function S(s), i.e., large

loop gains, over the broadest possible bandwidth subject to

the constraints imposed by stability robustness, i.e., the W3

design constraint. (Refs. 8, 12]

The weighting functions are directly associated with the

physical characteristics of the feedback control system being

designed. These characteristics include time domain

specifications (rise time, settling time, and overshoot),

performance bounds, and command response in the case of 7Wl,

magnitude of the control inputs in the case of W2, and largest

anticipated relative modeling error Em(s) in the case of W3.

It should be understood that the resultant H. controller is

only optimal with respect to the 1WI, W2, and W3 weights

selected. It is necessary, therefore, that the designer have

a good insight into the physical capabilities of the system,

including stability robustness constraints, to ensure that a

reasonable H. problem is posed. Postlethwaite [Ref. 8]

suggests selecting a fixed weighting W3 representing the

stability robustness constraints, and as large a weighting

-YW1 as possible representing system performance. The

objective is to make the largest singular value of S(s) as

small as possible over some operating frequency band by making

YW1 as large as possible over the same frequency band. This

is done while satisfying Equation (3.3). The following
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algorithm is recommended in choosing appropriate weights for

the H, control problem [Refs. 7, 8]:

1. Select the weight W3 to represent the stability
robustness (design) constraints.

2. Select the weight W1 and set 7=1 to represent an initial
guess of the performance objectives over the desired
operating bandwidth. The 7W1 0 dB crossover frequency
,_ must be less than the W3 crossovz frcquency w, in
order that the stability robustness constraint, Equation
(3.2), is not violated.

3. Solve the small gain problem in search of a stabilizing
controller that satisfies Equation (3.3), i.e.,

4. If IlTylud1I < 1, select a larger I and repeat step 3.

5. Continue increasing 7 until a stabilizing controller no
longer exists that satisfies Equation (3.3), i.e.,
IITYlU111. > 1 or the stability robustness constraint,
Equation (3.2), is violated.

6. If it is necessary to make the D12 submatrix full column
rank, choose a W2 weighting with an invertible D matrix,
i.e., W2 (s)=EI where E is any non-zero number. A W2
weighting can also be used to regulate the magnitude of
the control energy input to the system plant G(s). As
the magnitude of E is increased relative to 7, a larger
weighting is placed upon the control inputs u. This
results in a smaller control energy input to the plant
G(s). Decreasing the magnitude of E relative to 7 has
the opposite effect.

C. CONTROL SYNTHESIS

Once the design requirements are specified in terms of the

weighting functions 7Wi, W2, and W3, the H, controller is

calculated within a computer aided design environment. The

procedure involves an iterative process accomplished by

increasing the coefficient 7. Increasing 1, or decreasing
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results in a smaller DC gain and higher -c for (-yWi)

Therefore, the iterative increase of I results in a continual

suppression of the sensitivity function S(s) and a widening

of the control bandwidth w.. This iteration is continued

until the sensitivity function S(s) is forced against its

upper constraint of (IW) for w<-c (Figure 3.3). Due to the

PERFORMANCE
BOUND (-fW1 )0 dB ) --

0dB 7 STABILITY// , TABILITY
BOUND W3

/

oC (S)

0 max (T) /

Figure 3.3 Singular Value Bode Plot of S, T, W1 , and W3

relationship between the sensitivity function S(s) and

complementary sensitivity function T(s) , i.e., Equation

(2.28), T(s) goes to I as S(s) goes to 0. Therefore,

increasing -y forces the complementary sensitivity function

T(s) against its upper constraint of W3' for w>w, (Figure 3.3)
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[Ref. 12]. Figure 3.4 presents a flow chart of the H.,

iterative procedure [Ref. 7]. Augmentation of the plant G(s)

with the weighting functions and presentation of the necessary

singular value Bode plots are performed by separate M-files

within the Matlab Robust-Control Toolbox package.

D. COMPARISON OF LQG, H2, AND H. CONTROL SYNTHESES

The intent of the following discussion is to provide an

appreciation for the advantages of using H. control synthesis

over the use of other modern methodologies such as LQG and H2

norm (also known as frequency-weighted LQG). This end will

be accomplished by revealing the disadvantages and short-

comings of these latter two synthesis methods. Only a cursory

discussion of the LQG and H2 methods will be presented. Those

unfamiliar with these methods are referred to the listed

references for a more thorough explanation.

In the following discussion, reference to linear quadratic

(LQ) regulators refers to those regulators with full state

feedback. LQG refers to regulators that have output feedback

and use a Kalman filter to provide state estimates for

feedback. LQG problems involve the solution of two Riccati

equations, one to solve for the optimal state feedback gain

and a second to solve for the optimal filter gain.

It is well documented [Ref. 5:pp. 191-211] that linear

quadratic (LQ) regulators possess guaranteed minimum gain and

phase margins of -6 dB to o and ±60 degrees, respectively.
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Figure 3.4 H. Iterative Process
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This is true for a diagonal control weighting matrix R. These

guaranteed stability margins imply "desirable" loop gain

properties which, as discussed in Chapter II, define system

performance and stability robustness. Unfortunately, these

LQ stability margins and associated loop gain properties do

not necessarily apply at the plant inputs and outputs of LQG

regulators. As discussed by Lehtomaki [Ref. 5:pp. 217-226],

the Kalman filter is the dual of the LQ regulator and does

possess the above guaranteed stability margins. The Kalman

filter, therefore, possesses the desirable loop gain

properties.

The standard LQG control system block diagram is presented

in Figure 3.5. The points marked 2 and 3 represent the

feedback control system input F(S)G(s) and output G(s)F(s)

loop gain matrices, respectively. It is at these locations

that the guaranteed stability margins of the LQ problem are

desired. However, it is at the loop gain matrices of points

1 and 4, inside the Kalman filter loop, that the guaranteed

stability robustness properties apply. This limitation to LQG

robustness is caused by the Kalman filter's inability to

account for modeling errors. That is, the Kalman filter

models the nominal plant and not the actual plant as given in

Equation (2.23). [Refs. 1, 5:pp. 217-226]

There are, however, two dual procedures that will

adequately recover the loop gain properties at the plant input

(point 2) or output (point 3) to approximate the loop gain
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functions at points 1 and 4, respectively. Each of these two

procedures, referred to as "full-state loop transfer

recovery," permits the recovery of desirable performance and

stability robustness properties at the plant input or output

as appropriate. A limitation to these recovery procedures is

that they work only for a minimum phase plant G(s). An

additional limitation is the loop gain recovery applies only

at the input or output of the physical plant but not

necessarily at both. As performance and stability robustness

qualities are important at both the plant input and output,

some design tradeoffs must be made. Finally, the regulator

or Kalman filter gains necessary to effect the loop gain

recovery at the plant input and output, respectively, are

often very large and physically impractical. [Refs. 1, 5:pp.

226-229 and Ref. 7:pp. RR42-RR44]

A primary difference between LQG and H. control syntheses

is the absence of frequency-dependent shaping of the loop

gains with the LQG methodology. Thus, H. control synthesis

provides the designer more control over the shaping of

performance and stability robustness attributes due to the

inclusion of the weighting functions IW1 and W3. H2 control

synthesis is a frequency-weighted LQG process that, like H.,

uses the frequency-dependent IW1 , W2, and W3 weighting

functions and augmented plant P(s). In the case of the H2

control problem, however, the objective is to calculate a

36
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stabilizing controller F(s) that minimizes the H2 norm of the

closed loop transfer function Tylu 1(s), that is [Ref. 7]

mineemi y11 2
where

Iin

IITY10I12 = Z (O i (Ty1 U1(jW))) 2 dw (3.1P

Using the Matlab h2lqg M-file, the H2 norm control problem

is solved as a conventional LQG problem involving two Riccati

equation solutions, one each for the full state regulator and

Kalman filter optimal gains. The H2 control problem

formulation, weight selection, and synthesis format is

identical to the H. control problem. H2 synthesis is often

used with H., synthesis as a first cut to determine the levels

of performance achievable. Figure 3.6 presents a flow chart

of the combined H2/H. synthesis process.

An interesting feature of the H. two Riccati equation

solution is that the resultant controller displays a

separation structure similar to that observed in LQG or H2

problems. That is, The algebraic Riccati equations provide

solutions to what can be considered a suboptimal state

feedback gain and a suboptimal filter gain. [Ref. 7]

Although H2 synthesis shares the singular value loop

shaping capabilities of the H. procedure, the H2 designed

controller usually does not match the robustness levels

attained by the H. design. That is, an H. designed controller
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will, in general, provide a larger bandwidth of operation and

greater disturbance and uncertainty attenuation within the

stipulated stability constraints.
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IV. X-29 H. CONTROLLER SYNTHESIS

A challenging application of H. control theory is the

synthesis of a stabilizing controller for the longitudinal

dynamics of the X-29. The X-29 is a technology demonstrator

with a unique forward swept wing design that offers the

advantages of improved maneuverability, better low speed

handling, and reduced stall speeds. The X-29's longitudinal

dynamics are designed with 35 per cent negative static

stability margin [Ref. 15]. Unlike the advanced fighter model

with an unstable phugoid mode used by Safonov [Ref. 7] to

demonstrate H2 and H, methodology, the X-29 has an unstable

short period mode, i.e., a real pole on the positive axis.

The X-29 controller synthesis was performed using Pro-

Matlab and the Matlab Robust-Control Tool Box software. These

application packages were run on a Sun 386i work station. The

script files specifically written or modified for this problem

are listed in Appendix A.

This chapter discusses the X-29 state space model, the H.

design objectives and specifications, the controller

synthesis, and the design results including the aircraft's

longitudinal responses to test inputs.
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A. X-29 MODEL DESCRIPTION

The X-29 longitudinal dynamics model is that of the

aircraft's analog reversion mode with the aircraft trimmed at

.5 mach, 30,000 feet. An 83rd order model was reduced to a

14 state model that includes a short period approximation of

the aircraft longitudinal dynamics, vertical velocity w and

pitch rate q, and fourth order actuator dynamics for each of

the three longitudinal control surfaces, i.e., the canards,

flaps, and strakes. Eliminated from the 83rd order model were

the flexible mode dynamics, aerodynamic lag terms, sensor

dynamics, and notch filter.

Figure 4.1 presents the physical configuration of the open

loop actuator/aircraft dynamics model. Some of the actuator

gains shown in Figure 4.1 may have changed in the current

aircraft configuration. For the purposes of this study, two

separate commands, ri and r2, are input to the three control

surface actuators with ri controlling the canards and r2

controlling the flaps and strakes. Although not truly

representative of the X-29, this configuration provides

multiple, independently controlled surfaces representative of

a super-maneuverable aircraft. As will be seen, this

configuration results in the synthesis of advanced control

modes which are characteristic of super-maneuverable aircraft

designs. The control inputs to the aircraft dynamics are the

canards 6c, the flaps 6f, the strakes S and their respective

first and second derivatives. The measured outputs are the
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two aircraft states, w and q. Thus, the model has two inputs,

two outputs, and 14 states.

The 14th order model was scaled in order to improve the

numerical conditioning of its state space representation. In

the scaling process the w state was transformed to angle-of-

attack a, i.e., a = w/u o where u0 is the initial forward

velocity, and the units of the actuator third derivative

states were transformed from rad/sec3 to le+04 rad/sec3 . This

scaling was effective in reducing the condition number of the

system's A matrix from an order of magnitude of 101 to l0 .

The state space realization of the resultant 14 state

linear model G(s) = C(sI - A)- 1B+D is presented in Appendix B.

The order of the state variables, their description, and

respective units are listed in Table 4.1. Finally, the open

loop poles of the X-29 model are listed in Table 4.2. Note

that the unstable short period mode has a real pole at 1.9550.

B. DESIGN OBJECTIVES

The singular value plot of the X-29 plant G(s) is

presented in Figure 4.2 where the solid curve is omax (G(jw))

and the dashed curve is cmin(G(jw)). The uncompensated X-29

model possesses poor disturbance attenuation, high sensitivity

to variations and modeling errors, and a small control

bandwidth u, as evidenced in Figure 4.2 by the small loop

gains at the lower frequencies. These performance

characterizations are to be improved by suppressing the
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TABLE 4.1

ORDERED LIST OF THE UNCOMPENSATED X-29 MODEL STATES

State Description Units

a angle-of-attack rad

q pitch rate rad/sec

6c  canard control input rad

6f flap control input rad

6s  strake control input rad

c canard control rate rad/sec

6t flap control rate rad/sec

ts strake control rate rad/sec

canard control accel. rad/sec 2

flap control accel. rad/sec 2

6s strake control accel. rad/sec 2

6c canard control jerk le+04 rad/sec3

flap control jerk le+04 rad/sec3

6 strake control jerk le+04 rad/sec3

44



TABLE 4.2

UNCOMPENSATED X-29 OPEN LOOP POLES

-2.2746e+02 ± 2.3201e+02i
-1. 4491le+02
-1. 4455e+02
1. 9550e+00

-1.0031e+02
-2. 7155e+00
-5.2506e+O1 ± 4.8410e+Oli
-5.2518e+O1 ± 4.8255e+O1i
-5. 0067e+O1
-2. 0172e+O1
-2. 0115e+O1

X-29 SV PLOT (G)

0

I N

-60 -*

-120

101 1 0- 10-1 100 101 102 103

FREQUENCY -rnd/.ecc

Figure 4.2 Singular Value Plot of the X-29 Plant G(s)
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sensitivity function singular values a1 (8(jw)) as much as

possible, i.e., making the loop gains as large as possible,

over as wide a bandwidth as possible. These performance

objectives must be performed within the bounds of the system's

stability constraints. In this problem, it is necessary to

attenuate the closed loop singular values of the complementary

sensitivity function a1 (T(jw)) by 20 dB at frequencies beyond

100 rad/sec, and to exhibit a second order roll-off beyond 100

rad/sec. These stability requirements ensure that the X-29

system has sufficient stability margin to tolerate modeling

errors or loop transfer function variations which could arise

from the unmodeled flexible modes. These flexible modes are

observed in the Bode plot of the 83rd order X-29 model (Figure

4.3) at the frequencies 100 rad/sec to 250 rad/sec. The

second order roll-off also closely matches that of the open

loop plant (Figure 4.2).

The following (IW1)1 (S), W2(s), and W3 1(s) weighting

functions were selected to meet the above performance

objectives and stability constraints:

.01(100s + 1)(-yw1) (s) = 7 * * I

.01s + 1 (2 x 2)

W2(s) = = -.001 * I
D (4 x 4)

1000
W3 (s) - * 1 (4.1)

S 2  (2 x 2)
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10-, 10'
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Figure 4.3 Open Loop Bode Plot of X-29 83rd Order Model

A plot of the H, W1 (s) and W3" (s) weighting functions is shown

in Figure 4.4. The W2 (s) weighting is included to ensure the

D 12 submatrix of the augmented plant P(s) has full column rank

(Equation (3.15)). This weighting function penalizes the

control u input to the X-29 plant G(s) as shown in Figure 3.2.

As the W3 (s) weighting function is not proper, it has no state

space realization. However, the term W3 (s)G(s) seen in the

matrix representation of the augmented plant P(s) (Equation

(3.7)) is proper and can be realized in the required state

space form. The augx29.m script file listed in Appendix A

performs the matrix calculations necessary for this

realization. The results of this matrix manipulation are
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X-29 Design Specifications
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Figure 4.4 X-29 H. Design Specifications

placed into the DW3CG and DW3DG terms of the augmented plant's

C1 and D12 submatrices, respectively, by the augx29pl.m script

file (Appendix A).

The resultant X-29 augmented plant P(s) is an 18th order

system with W1 (s) and W2 (s) each adding two states to the

X-29 plant G(s). The W3 (s) function does not add states to

G(s) as azt ct~te space realization of this function does not

exist. Using the two Riccati solution, H2 and H,, synthesized

controllers are the same size as the augmented plant P(s)

As such, an 18th order X-29 controller is expected.
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C. CONTROLLER SYNTHESIS

The H2/H, synthesis process outlined by Figure 3.6 was

followed with the H2 solution used as an initial indication of

achievable performance levels. To ensure a well-posed H2

problem, the upper corner frequency of the W1 
1 (s) weighting

function was removed by making the WI (s) denominator a

constant value. This ensured that the D11 submatrix of the

augmented plant P(s) is 0 as required by H2 control theory.

A plot of the H2 design specifications is presented in Figure

4.5.

X-29 Design Specifications
200 T B iV ,

" ' I , ' I i I ' ! 115 -, -iI : l+

50 .

c'LI

> 0

-50'.I I - ,

10-s 10-Z 10-. 100 10' 102 10

Frequecncy - Red/See

Figure 4.5 X-29 H2 Design Specifications
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Using the x29h2.m and x29hinf.m script files listed in

Appendix A, solutions to the H 2 and the H. small gain problems

were obtained for increasing values of I until:

1. For the H2 solution, the cost function IITYu 1 112 reached
the "all pass limit", i.e., 0 dB.

2. For the H, solution, no stabilizing controller satisfied
the H, small gain problem for a larger value of 1, i.e.,
no solution existed for a larger 1.

Figures 4.6 and 4.7 are singular value plots of the maximum

(solid curve) and minimum (dashed curve) singular values of

the H2 cost function IITy1 iII2  for I values of one and 6.7,

respectively. Figure 4.8 is an identical plot for the H. cost

function IITY1U111 for a -y of 12.5. Figures 4.6 and 4.7 show

that as I increases from one to a maximum of 6.7 in the H2

solution, the maximum singular value of iITylu1112 increases to

0 dB. The H2 solution pushes both ITyi1112 singular values to

within 2 dB of the "all pass limit" (Figure 4.7). However,

with a maximum I of 12.5, the H, solution pushes the JITYlU111

singular values to within .5 dB of the "all pass limit"

(Figure 4.8). The significantly larger value of I in the H.

solution indicates that a higher level of performance is

achieved with the H solution compared to that reached by the

H2 solution.

Figures 4.9 throuah 4.11 are singular value plots of the

sensitivity function S(s) and (TyW 1) 1(s) weighting function for

the H2 solution with -f values of one and 6.7, and the H.

solution with a I of 12.5, respectively. The dotted curves
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Figure 4. 6 H2 Cost Function IITY1U1II2 for 1y=1
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Figure 4.7 H2 Cost Function JITY1U1lI 2 for 1= 6.7
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COST FUNCTION TyluI (Gamma =12.5)
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Figure 4.8 H.1 Cost Function IlTy1udIK for (=12.5
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SENSITIVITY FUNCTION AND 1/WI
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Figure 4.9 Sensitivity Function S(s) for H2 Solution, 1=1

SENSITIVITY FUNCTION AND i/wi
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Figure 4. 10 Sensitivity Function S(s) for H2 Solution, 1y=6.7
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SENSITIVITY FUNCTION AND I/WI
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Figure 4.11 Sensitivity Function S(s) for H, Solution, y=12.5

are amx (S(jw)) while the dashed curves are Omin(S(jw)).

Figures 4.12 through 4.14 are singular value plots of the

complementary sensitivity function T(s) and W3"1 (s) weighting

function for the H2 solution with I values of one and 6.7, and

H. solution with a I of 12.5, respectively. Here, the dashed

curves are 0 max(T(jw)) while the dotted curves are c,,n(T(jw)).

As I is increased from one to 12.5, the sensitivity function

S(s) is incrementally suppressed by the (yW,) 1(s) weighting

function, and the complementary sensitivity function T(s) is

pushed toward the stability constraint, i.e., the S(s) and

T(s) singular values are forced against their respective upper

limits (jW1) (s) and W3 1(s). Comparing Figures 4.10 and 4.11,
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COMP. SENSITIVITY FUNCTION AND 1/W3
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Figure 4.13 Complementary Sensitivity Function T(s)
for H,1 Solution, -(=l.
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COMP. SENSITIVITY FUNCTION AND I/W3

150"

l~~~~/W3(s) 't , tl

IOI' ' ; ; >' . ,' II

I,, I F,-1500

En 0 -- --- -' ,. . . ..... .... !

10-3 10-2 10-' 100 10' 102 10

Frequency - rad/sec

Figure 4.14 Complementary sensitivity Function T(s)

for H, Solution, 1=12. 5

it is seen that c(S (jw)) is suppressed more by the H, solution

meaning the H. compensated X-29 is characterized by larger

disturbance attenuation, lower sensitivity to plant variations

and modeling errors, and a wide- control bandwidth wB

Inspection of Figures 4.13 and 4.14 iizws that the closed loop

bandwidth of the H, solution is larger, reaching nearly 30

rad/sec. This indicate~s the H. compensated X-29 is a more

responsive aircraft than the H2 compensated aircraft.

As anticipated, the H, solution to the small gain problem

results in an 18th order controller. To "clean up" the

solution, a minimal realization was performed using the Matlab

minreal M-file to eliminate two uncontrollable and

unobservable states. The minreal M-file finds the similarity
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transformations of a system's state space realization such

that the A, B, and C matrices are put into staircase

controllability and observability forms. Minreal then removes

the isolated uncontrollable or unobservable states from che

system model. Next, the minimal 16th order controller was

balanced usina the Matlab obalreal M-file to improve the

numerical conditioning of the controller model. The obalreal

M-file finds a similarity transformation such that the

mappings from inputs to states and states to outputs are

balanced while preserving the input-output relationships.

Finally, a fast transient pole at -1.6262e+05 was removed

using the Matlab modred M-file. Modred eliminates specified

states from a state space model while preserving the system's

input-output relationships. Each of the 16 minimal states was

individually eliminated until the state that removed the fast

transient pole was identified. The resultant 15th order

minimal controller was used in plotting the H. cost function

I TY ,,11 K, sensitivity function S(s) , and complementary

sensitivity function T(s) results presented in Figures 4.8,

4.11, and 4.14, respectively.

However, further reduction of the H. controller size is

aesirable. Therefore, attempts were made to reduce the 15th

order controller using the Schur additive error model

reduction method [Ref. 7]. This model reduction method allows

the size of the reduced order model to be selected. Additive

modeling error EA (S) is defined as
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EA(S) = F(s) - #(s) (4.2)

where F(s) and F(s) are the true transfer function matrix and

its reduced model, respectively. To ensure the additive

modeling error EA will not destabilize the closed loop system,

the control bandwidth w. of the reduced model must be less

than the additive robust frequency wra, i.e.,

(i < Wrf'

where

ra = max((,I Omin(F(J) ) j c,(EA(jW) ) (4.3)

This condition for system stability assumes

lj x(EA(i ) ) < mi_ (F(j )) for w wra" (4.4)

That is, given EA is the only information available about the

modeling error, the additive robust frequency wra is an upper

bound on the bandwidth of a multivariable control system

without violating the required condition for stability, i.e.,

Equation (2.25). [Ref. 7]

Figure 4.15 compares the singular value plot of the 15th

order controller with that of a selected eighth order

controller. The upper ksolid) curve is a plot of c...x(F(jw))

and cna,(F(jw)) for the 15th order and 8th order controllers,

respectively, while the lower (dashed) curves are plots of

Gmin(F(jw)) and cmn,(F(j) as indicated. Figure 4.16 displays
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Figure 4.15 Comparison of 8th order and 10th Order

X-29 Controllers
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Figure 4.16 8th Order Controller Additive Error EA
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the singular values of the eighth order controller's additive

error where the dashed and dotted curves are uX(EA(iW) ) and

amin(EA(j W)), respectively. The solid curve is an upper bcund

on cmax (EA(jW)). As shown in Fiqure 4.15, the additive robust

frequency wra, i.e., where

x (E (ji)-) = Umin(F(j)) ,

is approximately 2 rad/sec. The control bandwidth wB of over

200 rad/sec, defined at the 3 dB point, is clearly greater

than the additive robust frequency wra" As the closed loop

feedback control system can be destabilized by the additive

modeling error EA, the eighth order controller is not a

suitable alternative for the 15th order controller.

However, examination of Figure 4.17, which compares the

singular value plots of the 15th order and a selected 10th

order controller, shows the two controllers to be well

matched. Figure 4.18 shows the ox(EA(jW)) and omin(EA(jW))

plots of the 10th order controller's additive error, i.e., the

dashed and dotted curves, respectively. Again, the solid

curve is an upper bound on acx(EA(jW)). As can be seen from

Figures 4.17 and 4.18, a,.(EA(j()) does not intersect

Omin(F(jw)) within the frequency range of the graph, i.e., w,,

> 103 rad/sec. Clearly, the control bandwidth w, of the 10th

order controller, shown just below 200 rad/sec, is less than
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10th & 15th ORDER X-29 CONTROLLERS
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Figure 4.17 Comparison of 10th Order and 15th Order
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Figure 4.18 10th Order Controller Additive Error EA

61



the additive robust frequency Wra, and the 10th order

controller is a suitable alternative to the 15th order

controller.

D. DESIGN RESULTS OF THE H. CONTROLLER

The closed loop configuration of the H, compensated X-29

is presented in Figure 4.19 where F(s) and G(s) are the 15th

order controller and 14th order X-29 plant transfer function

matrices, respectively. The output vector y is made up of the

aircraft states a and q, and the command vector r is composed

of separate command elements ri and r2 . Unlike the open loop

actuator/aircraft dynamics model presented in Figure 4.1, ri

and r2 are reference commands to the controlled outputs, a

and q. This is a result of the controller being placed in

series with the X-29 plant in the feedforward loop and the

r U w,q
£ F(s) G 0(s)

Figure 4.19 Feedback Configuration for H. Compensated X-29
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negative unity feedback. Thus, the closed loop, compensated

X-29 model has two inputs, two outputs, and 29 states. As

will be seen, this closed loop configuration still provides

the multiple, independently controlled surfaces observed with

the open loop, uncompensated X-29 plant G(s).

The state space realization of the 29th order, closed loop

model is presented in Appendix B. A b7 lanced realization was

performed separately on the controller F(s) and the X-29 plant

G(s) to improve their numerical conditioning. As a result of

this balancing, the internal structures of F(s) and G(s) were

altered making identification of the individual states

difficult. The poles of the closed loop model are listed in

Table 4.3. It is interesting to note that the unstable short

period pole of the open loop system is mirrored into the left-

half plane of the closed loop system, i.e., -1.9550. This is

not a coincidence as an identical occurrence is observed in

Safonov's advanced fighter example presented in Ref. 7. In

Safonov's example, the unstable phugoid poles of the advanced

fighter's open loop model are mirrored into the left-half

plane of the compensated, closed loop model. This mirror

imaging can represent a basic limitation to the system's

performance if, as in the case of the compensated X-29, this

is the dominate pole.

As discussed in Chapter II, the singular values of the

return difference and inverse-return difference matrices

quantify a system's feedback properties. In the following
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TABLE 4.3

H. COMPENSATED X-29 CLOSED LOOP POLES

-4.1327e+02
-2.2745e+02 ± 2.3201e+02i
-1.3068e+02 ± 4.6111e+01i
-5.3305e+01 ± 8.9700e+01i
-1.4491e+02
-1.4452e+02
-1.3014e+02
-1.3877e+01 ± 5.9243e+01i
-9.9794e+01
-5.2545e+01 ± 4.8359e+01i
-5.2503e+01 ± 4.8301e+01i
-7.4132e+01
-1.9550e+00
-2.7155e+00
-2.0379e+01 ± 2.1564e+01i
-2.0578e+01 ± 1.8907e+01i
-4.9199e+01 ± 6.5316e+00i
-4.2465e+01
-2.0184e+01
-2.0110e+01

paragraphs the feedback properties of the H, compensated X-29

will be measured using singular value plots of its return

difference matrices.

The singular value plots of the uncompensated and

compensated X-29 output, return difference matrices are

presented in Figures 4.20 and 4.21, respectively. In these

figures, as with all the return difference matrix plots, the

upper curves are amx while the lower curves are amin. Recall

from Chapter II that the output return difference matrix

I + G(s)F(s) (also referred to as the output, additive return

difference matrix) is the inverse of the sensitivity function
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Figure 4.20 Singular Value Plot I+G(s), Uncompensated X-29
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Figure 4.21 Singular Value Plot I±G(s)F(s),

H., Compensated X-29
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S(s), and that the minimum singular value of this return

difference matrix approximates the loop gains whenever the

loop gains are large, i.e., Equation (2.22). Given this,

Figure 4.20 indicates the uncompensated X-29 possesses small

loop gains along with the corresponding traits of poor

disturbance attenuation and high sensitivity to plant

variations and modeling errors. Figure 4.21 shows how the H,

synthesized controller has markedly improved the X-29

performance properties. The large loop gains indicate good

disturbance attenuation and low sensitivity to uncertainties

over a control bandwidth wB of approximately 9 rad/sec.

However, the dip of the singular values below the 0 dB line

indicates that performance is lacking near the 0 dB crossover

frequency. This is probably caused by the steep roll-off

(-40 dB/decade) designed into the complementary sensitivity

function. Finally, the 9 rad/sec control bandwidth w. of the

compensated X-29 is less than the multiplicative robust

frequency Wrm of 30 rad/sec ensuring that the required

condition for stability (Equation (2.25)) is not violated at

the X-29 plant output.

The singular value plot of the output, inverse-return

difference matrix I + (G(s)F(s)) 1 (also referred to as the

output, multiplicative return difference matrix) for the

compensated X-29 is shown in Figure 4.22. The minimum

singular value of this matrix, i.e., cmin[I + (G(jw) (F(jw)) ],
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Figure 4.22 Singular Value Plot I+(G(s)F(s))
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H, Compensated X-29

can provide a measure of the aircraft's gain and phase margins

with respect to multiplicative modeling errors using the

universal gain and phase margin curve (Figure 4.23) [Ref.

6:pp. 54-55]. As shown in the universal curve, a minimum

singular value of one, i.e., 0 dB, provides gain and phase

margins of -6 dB to infinity and ±60 deg, respectively, or

that stability margin guaranteed by the LQ regulator problem.

It is seen from Figure 4.23 that any singular value less than

one is associated with suboptimal gain and phase margins.

Returning to Figure 4.22, it is seen that cmIn I +

(G(jw)F(j'o)) "'] drops to approximately -2 dB at frequencies

between 1 rad/sec and 20 rad/sec. Entering the vertical axis

67



PHASE MARGIN ±0

1. i , ,, m (I G J )

1.4

1 4-
* I.E / - ~

+ o

----- ---

i-

*40

I- ,,, .
10o.0 0°

02 0

+
H .4

0 0 10 0

GAIN MARGIN (dB)

Figure 4.23 Universal Gain and Phase Margin Curve

of the universal curve at a singular value of .79, i.e., -2

dB, the gain and phase margins of the compensated X-29 near

the 0 dB crossover frequency are -14 dB to +5 dB and ±47 deg,

respectively. This is more stable than the -8 dB to +4 dB,

+35 deg gain and phase margins typically designed into a

fighter aircraft.

The singular value plots of the input additive and input

multiplicative return difference matrices are shown in Figures

4.24 and 4.25, respectively. These singular value plots show

that the H. solution to the X-29 small gain problem does not

satisfy the performance objcztives or the stability

constraints at the X-29 plant input. An exceptionally poo:

68



X-29 SV PLOT (I + F'G)
00

50

40 .

30

ch 20

10

0 ,.....,

-10

10-3 10-2 10-1 100 10' 102 103

FREQUENCY -rad/sec
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disturbance attenuation and low sensitivity to uncertainties

are indicated by a small amin[I + F(jo)G(jw)], especially

between the frequencies of 2 rad/sec and 300 rad/sec (Figure
4.24). A ami,] + (F(j1)G(jw))"1] of -11 dB equates to a gain

and phase margin of -3 dB to 2 dB and ±15 deg, respectively,

over much of the bandwidth between 2 rad/sec and 60 rad/sec

(Figure 4.25). Further, since

amin[I + (F(jw)G(jc)) "1 ] < 1W3
1 (jW) ,

the required condition for stability, Equation (2.25), is

violated meaning a relative modeling error exists that can

destabilize the aircraft at its inputs. It can be concluded

that H. control synthesis does not guarantee that the

performance and stability robustness requirements of Equations

(2.27) and (2.25) will be satisfied at the plant G(s) inputs.

A .01 /45 rad (1 deg) step input was applied separately for

one second to each of the two reference commands, and the

aircraft responses and control deflections plotted. Following

standayii convention, a positive a or q corresponds to a nose-

up response, and a positive control deflection is trailing

edge down for all three control surfaces. Positive canard

deflection 6c, negatie flap deflection 6f, and negative strake

deflection 6. each induce a nose-up response, i.e., positive

a and q.

The closed loop, compensated X-29 model (Figure 4.19)

exhibits precision flight path control modes as a result of
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the multiple, independently controlled surface configuration.

Figure 4.26 presents a graphic representation of these

precision control modes in terms of angle-of-attack a, pitch

attitude 8, flight path angle -f, and the aircraft principal

and stability axes xp and xs, respectively. (Note that the

flight path angle I is in no way related to the 7 constant

used in the H2 and H. design specifications.) The three

precision longitudinal modes observed are [Ref. 3]:

1. Vertical Translation: The aircraft vertical velocity
is controlled at a ccnstant 6 by varying a, i.e., the
aircraft flight path angle ycr velocity vector is
controlled while xs remains fixed.

2. Direct Lift Control: The aircraft flight path angle y
is controlled at a constant a by varying 0, i.e., the
aircraft flignt path angle I or velocity vector remains
along the aircraft stability axis xs as xs rotates.

3. Pitci, Pointing: The aircraft pitch attitude 0 is
controlled at a constant flight path angle 7, i.e., the
aircraft flight path angle I or velocity vector remains
fixed while x. rotates (8 = a).

The a and q responses of the compensated X-29 are

presented for inputs 1 and 2 in Figures 4.27 and 4.28,

respectively. The compensated X-29 responds to input 1 (r1 )

with a positive a and negligible change in a, i.e., order of

magnitude is 10-, (Figure 4.27) which is the vert- al

translation mode discussed above. That is, input one

decouples q and 0 from a. The compensated aircraft exhibits

a fast response to input 1 with an a rise time of .125 sec.

The direct lift control mode is effected by input 2 (- :S

shown in Figure 4.2a. The aircraft responds to input 2 with

i positive q while its a tesponse is neqi igible, i.e., cric-

7 1



vc, xs

Xr

Reference Condition

vca

Vertical Translation

Figure 4.26 Advanced Control Modes

72



Xp

Vc, x I

X,

Direct Lift Control
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Vc a E)

Pitch Pointing

Figure 4.26 (Cont) Advanced Control Modes
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Figure 4.27 Compensated X-29 a and q Responses to Input 1
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Figure 4.28 Compensated X-29 a and q Responses to Input 2

75



of magnitude is 10-. As with input 1, a decoupling of the

aircraft responses, a and q, is observed with input 2. The

aircraft q response is equally fast with a rise time of

approximately .095 sec. Figures 4.29 and 4.30 show the

compensated X-29 control surface deflections Sc, 6f, and 6. for

inputs 1 and 2, respectively. From these figures it is

determined that the flap and strake control inputs, 6, and 6.

respectively, control the aircraft's a response while the

canard 6c controls the q (and 6) response. A simultaneous

injection of inputs 1 and 2 is necessary to effect the pitch

pointing precision control mode.

The control deflections 6c, &5, and 6s for the vertical

translation mode (input 1) have peak magnitudes between 1.4

rad and 3 rad which exceed the X-29's control surface

deflection limits of;

1. canards (leading edge): 30 deg up / 60 deg down,

2. flaps (trailing edge): 10 deg up / 25 deg down,

3. strakes (trailing edge): 30 deg up and down.

The control deflections are significantly less for the direct

lift control mode (input 2) with reak magnitudes between .15

rad and .6 rad, and are more closely aligned with the control

surface deflection limits listed above. A similar difference

in control rates between inputs 1 and 2 is observed in Figures

4.31 and 4.32 which present the compensated X-29 control rates

6c, 6f, and 6s for inputs 1 and 2, respectively. The peak
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Figure 4.29 Compensated X-29 Control Deflections

6c 6 f, and 6 for Input 1
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3-I

2 ,

-11

-2

-3

-4
0 0.5 1 1.5 2 2.5 3 3.5 4

TIME - see

Figure 4.29 (Cont) Compensated X-29 Control Deflections
6c, 6f? and 6S for for Input 1
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Figure 4.30 Compensated X-29 Control Deflections
6c, 6f, and 6. for 'or Input 2
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Figure 4.30 (Cont) Compensated X-29 Control Deflections
6c, 6f, and 6. for for Input 2
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Figure 4.31 Compensated X-29 Control Rates

ic, if? and i s for Input ]

81



X-29 DSDOT FOR 0.01745 rad /I mec STEP (INPUT 1)
150

100[

50-

05

010

MIE -50e

Figure 4.31 (Cont) Componsated X-29 Control Rates
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Figure 4.32 Compensated X-29 Control Rates

~ 6,,and 6~for Input 2
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X-29 DSDOT FOR 0.01745 rad / I sec STEP (INPUT 2)
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Figure 4.32 (Cont) Compensated X-29 Control Rates

6C, 6f, and 6 s for Input 2

control rates for both inputs 1 and 2, ranging from

approximately 8 rad/sec 2 o over 100 rad/sec, greatly exceed

the X-29 actuator, minimum design requirements of;

1. canards: 1.75 rad/sec (100 deg/sec),

2. flaps: .87 rad/sec (50 deg/sec),

3. strakes: .52 rad/sec (30 deg/se).

E. LIMITED-PERFORMANCE H. CONTROLLER DESIGN

The H. synthesis of a stabilizing controller for the X-29

was reworked to bring the control surface defiections and

control rates more into line with physical capabilities. A
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secondary objective was to retain the system robustness

achieved with the initial H. controller. To accomplish these

objectives, a greater weighting or penalty was applied to the

control input vector u of Figure 3.2. This was effected by

increasing the magnitude of the W2(s) E term to .025.

Additionally, the upper corner frequency of the W 1 (s)

weighting function was moved from 100 rad/sec to 10 rad/sec

to restrain the sensitivity function overshoot near the 0 dB

crossover frequency. The weighting function assignments for

the limited-performance controller design are:

.01(100s + 1)(7W) 1(s) = -I * * I

.1s + 1 (2 x 2)

W2(s) = [ = -.025 * I
c D (4 x 4)

1000
W3

1 (s) - * 1 (4.5)
s 2  (2 x 2)

A plot of the W,-1(s) and W3 1(s) weighting functions is shown

in Figure 4.33.

To avoid confusion, the initial H, controller design will

be referred to as the optimal-performance case. This is not

meant to imply that the solution is the result of a cost

function minimization as with the LQ regulator problem.

Rather it implies the compensated X-29 performance is optimal
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X-29 Design Specifications
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Frequency - rad/sec

Figure 4.33 Limited-Performance X-29 H. Design

Specifications

with respect to the design specifications. The reworked

controller design will be termed the limited-performance case.

With a maximum achievable I of 2.62, the limited-

performance H. solution is only able to push the IITYi1ii,1 cost

function singular values to within 5 dB of the "all pass

limit" (Figure 4.34) as compared to .5 dB for the optimal-

performance H, solution (Figure 4.8). The singular value

plots of the sensitivity function B(s) and the complementary

sensitivity function T(s) for the limited-performance X-29
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COST FUNCTION Tylul (Gamma = 2.62)

I I I

-2 - i I

i i
K un I L

-8 I,. ! ;,

I, I !I

10- lO-2 10-1 100 101 102 103

Freqierncy - rad/scc

Figure 4.34 H. 2ost Function IITy 1o l. for 1= 2 . 6 2 ,
Limited-Performance X-29

are presented in Figures 4.35 and 4.36, respectively. These

figures are from the H, solution for a I of 2.62. Comparison

of Figures 4.35 and 4.36 with Figures 4.11 and 4.14 shows that

the feedback properties of the limited-performance X-29 are

not as robust as those of the optimal-performance aircraft.

The limited-performance X-29 is characterized by smaller

disturbance attenuation, larger sensitivity to plant

variations and modeling errors, a smaller control bandwidth,

and a smaller closed loop bandwidth.

The state space realization of the 29th order, closed loop

limited-performance model is presented in Appendix B, and the

closed loop poles are listed in Table 4.4. Note that, once
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SENSITIVITY FUNCTION AND 1/WI

10 H....

-0 -t ---- IL
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Figure 4.35 Sensitivity Function S(s) for Ha, Solution,
1y=2.62, Limited-Performance X-29

COMP. SENSITIVITY FUNCTION AND 1/W3200
100 i! iiI

50 I

-50

-100

-150 ]

10-3 10-2 10-' 100 10' 1021 103

Freltiency - rad/scc

Figure 4.36 Complementary Sensitivity Function T(S) for
H., Solution, y=2.62, Limited-Performance X-29
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TABLE 4.4

CLOSED LOOP POLES OF THE LIMITED-PERFORMANCE X-29

-2.2747e+02 ± 2.3201e+02i
-1.3612e+02
-1.4415e+02
-1.4494e+02
-1.4476e+02
-1.0023e+02
-5.1688e+01 ± 7.7445e+01i
-7.2313e+01
-3.7606e+01 ± 5.2777e+01i
-5.1716e+01 ± 5.0560e+01i
-5.3298e+01 ± 4.7220e+Oli
-5.2512e+01 ± 4.8306e+01i
-5.0505e+01
-3.6342e+01
-1.1889e+01 ± 1.2160e401i
-1.9539e+00
-2.7204e+00
-3.7372e+00
-9.6752e+00
-2.0387e+01 ± l.1180e+00i
-2.1180e+01

again, the unstable short period pole of the open loop system

was mirrored into the left-half plane of the closed loop

system, i.e., -1.9539.

Review of the output return difference matrices confirms

the above characterizations of the 1imited-prformance

aircraft (Figures 4.37 and 4.38). The singular value plot of

Cmin[I + G(jw)F(jw)] (Figure 4.37) clearly shows a smaller loop

gain as compared to that of the optimal-performance X-29 (Fig-

ure 4.21). Referring to Figure 4.38, amin[I + (G(jw)F(jw)) I ]

drops to approximately -3.45 dB, a .67 singular value, between

1 rad/sec and 10 rad/sec. Using the universal gain and phase

margin curve of Figure 4.23, this equates to a gain and phase
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margin of -10 dB to +5 dB and ±39 deg, respectively.

Therefore, the stability margins of the limited-performance

X-29, with respect to multiplicative modeling errors, is

closer to the values desired of a fighter aircraft, i,e., -8

dB to +4 dB, ±35 deg gain and phase margin, respectively.

The singular value plot of the input, additive return

difference matrix (Figure 4.39) shows that the limited-

performance H, solution also did not satisfy the desired

performance objectives at the X-29 plant inputs. That is,

amin[I + F(jw)G(jw)] is small, especially between .8 rad/sec

and 30 rad/sec. However, the singular value plot of the

input, inverse-return difference matrix (Figure 4.40) shows

that the required stability constraints are met at the X-29

plant inputs, i.e.,

Omin [I + (F(j )G(J )) " ] > 1W3 (J)

Although the stability constraints are satisfied, the relative

stability with respect to multiplicative modeling errors is

very low between .7 rad/sec and 15 rad/sec. This is evidenced

by the large sub-0 dB values of cmir[I + (F(jw)G(ju)) .]. A

minimum singular value of -13 dB at 4 rad/sec equates to a

gain and phase margin of -2 dB to 2 dB and ±12 deg,

respectively.

Identical step inputs were applied to the limited-

performance X-29 model as were previously applied to the
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optimal-performance model. Figures 4.41 and 4.42 show the a

and q responses of the limited-performance X-29 for inputs 1

and 2, respectively. As with the optimal-performance X-29,

the limited-performance X-29 responds to input 1 (rj) with a

positive a while input 2 (r2) effects a positive q response.

However, the decoupling of the a and q responses is not as

pronounced as observed in the optimal-performance X-29. This

indicates that the precision flight path modes are not

achieved in the limited-performance X-29 to the extent

observed in the optimal-performance case. The limited-

performance X-29 responses to the step inputs are slower with

rise times of .5 sec and .22 sec for a and q, respectively.

This is a result of the smaller closed loop bandwidth observed

in the complementary sensitivity function.

The control deflections 6c, 5f, and 5s for the limited-

performance X-29 (Figures 4.43 and 4.44) are considerably

smaller than observed for the optimal-performance case. The

pear, magnituaes ot the defiections tor inputs 1 and 2 vary

from .1 rad to .33 rad and, .ith the exception of negative

flap deflection for input 1, are well within the X-29 control

surface deflection limits. it is also been LiicL Llil ilput 1

and 2 deflections are more closely matched. Similar

observations are made for the control rates 6C, 6f, and 6. for

inputs 1 and 2 shown in Figures 4.45 and 4.46, respectively.
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Figure 4.41 Limited-Performance X-29 a and q Responses

to Input 1
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Figure 4.42 Limited-Perfornance X-29 a arid q Responses

to Input 2
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6 l 6f, and 6 for Input 1
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Figure 4.43 (Cont) Limited-Performance X-29 Control Deflections
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Figure 4.44 Limited-Performance X-29 Control Deflections

6cl 6f, and 6S for Input 2
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Figure 4.45 (Cont) Limited-Performance X-29 Control Rates

6c, 6f, and 6s for Input 1
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Figure 4.46 Limited-Performance X-29 Control Rates

6c, 6 ff and 6s for Input 2
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Figure 4.46 (Cont) Limited-Performance X-29 Control

Rates 6c, if, and s for Input 2

That is, the peak control rates of the limited-performance

X-29 range from .4 rad/sec to approximately 7 rad/sec which,

with the exception of 6c for input 2, exceed the actuators'

capabilities.

Although the primary objective of the limited-performance

H. controller was achieved, i.e., the control deflections and

control rates were reduced, it is obvious from the results

that the performance robustness of the compensated X-29 wds

reduced. Considering the results of the optimal-performance

and limited-performance H. solutions, there is a direct

relationship between the level of system performance attained
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and the weighting of the control inputs u (Figure 3.2). Small

control weightings permit a greater influx of energy into the

plant G(s) and improve system performance, i.e., larger loop

gains and a larger control bandwidth. The constraint for this

particcular example is the physical plant's inability to

accommodate the energy levels necessary to attain the desired

levels of performance. That is, actuator performance is

inadequate for the compensated X-29 to achieve the performance

levels specified in the H. small gain problem. The limite-1-

performance solution works around this constraint by

penalizing the control input u more heavily and accepting a

reduced system performance.
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V. CONCLUSIONS AND RECOMMENDATIONS

h, control theory provided a systematic and effcotive

procedure to synthesize a stabilizing controller for the

statically unstable X-29. The franmework of H. control theory

ensured that the performance and stability design

specifications, i.e., the jW1 and W3 weightings, were

satisfied. As a result, the H, optimal-performance X-29

demonstrates (at the plant outputs) good disturbance

attenuation, low sensitivity to plant variations and modeling

errors over a control bandwidth of 9 rad/sec, and sufficient

st-lbility margin to tolerate perturbations from the unmodeled

flexible mode dynamics.

Additionally, H. control theory demonstrated an ability to

cope with a true multivariable design problem such as the

multiple, independently controlled surfaces characteristic of

a super-maneuverable aircraft. The H. optimal-performance

X-29 demonstrates a quick response to command inputs along

with a decoupling of its angle-of-attack and pitch modes.

This latter attribute is necessary to effect the advanced

control modes in which aircraft flight path and pitch attitude

are independently controlled. However, the results also show

that the control surface actuators are saturated by the high

input energy necessary to realize the performance

specifications. That is, the control surface deflections and
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control rates required to effect the desired performance

atttioutes exceed the present actuators' performance

capabilities.

It was shown that a work-around to the problem of actuator

saturation is an increased penalty on the control input u.

The magnitude of the control surface deflections and control

rates for the limited-performance X-29 model are more in line

with physical capabilities at the expense of reduced

performance robustness. Therefore, it is apparent that

physical plant capabilities are an additional constraint in

achievinq the desired levels of performance, and must be

included in the H. problem formulation.

While H. control theory ensured satisfaction of the design

specifications at the X-29 plant outputs, the theory did not

ensure these specifications were met at the plant inputs.

This occurred since the feedback property specifications

are formulated in terms of the sensitivity function

(I + G(s)F(s)) "  and complementary scnsitivity function

G(s)F(s)(I + G(s)F(s)) " which are structured in terms of the

plant outputs.

It is recommended that the synthesis of an H. stabilizing

controller for the X-29 be repeated with actuator performance

considerations included in the H. problem formulation. This

can be accomplished by including the control inputs 6,f 6f,

and 6s and/or the control rates 6c, 6f, and 6s in the output

vector y, (Figure 3.1). The objective of this formulation is

106



to design a stabilizing controller that will not saturate the

control surface actuators, yet have the compensated X-29 match

the performance and stability robustness achieved with the

optimal-performance case.

Additionally, it is recommended that a second order W1 (s)

weighting function be considered in the H. problem formulation

in order to further suppress the sensitivity function S(s)

at frequencies immediately below its 0 dB crossover frequency.
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APPENDIX A

X-29 MATLAB SCRIPT FILES

%x29h2 .m
diary x29h2.dat
format short e

disp('
disp(' This script file is designed to solve the H2 control '

disp(' problem for the X-29. The 14th order FDLTI model, in state '

disp(' space form, is that of the X-29 aircraft and actuator dynamics.,)
disp(' Two states are those of the aircraft dynamics, i.e., alpha)
disp(' and q. The remaining 12 states are the dynamics of the ')
dispk(' three, fourth order actuators, i.e., the canard, flaperon, and '

disp(' strake actuators. The order of the unbalanced states is as '

disp(' follows:')
disp(' alpha, q, dc, df, ds, dcdot, dfdot, dsdot, dcdbldot,')
disp(' dfdbldot, dsdbldot, dctrpldot, dftrpldot, dstrpldot';
disp(' Given the open loop transfer function G(s)=Cinv(Is-A)B+D, a '
disp(' stabilizing controller F(s) will be found such that the H2 norm')
disp(' of Tylul is minimized. ')

disp(' H2 optimal control synthesis is performed to determine attainable')
disp(' performance levels. Once completed, an Hinf control '

disp(' synthesis is performed.')

disp('

pause
c
disp( ' The scaled X-29 aircraft and actuator state space representation')
disp(' )
ag=[-.4181d+00 .9960d+.00 -. 2269d-01 -. 1213d+00 -. 1948d-01 -.9493d-03 ..

.4427d-04 -. 6712d-04 .1451d-05 -.2162d-04 -.3540d-05 0.0 0.0 0.0;

.5474d+01 -.3424d+00 .2585d+01 -.1386d+01 -.1058d+01 .3898d-02..
-. 1164d-01 -. 6397d-02 -. 2509d-03 -. 5362d-03 -. 2912d-03 0.0 0.0 0.0;
0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0;
0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0;
0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0;
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0;
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0;
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0;
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0e+04 0.0 0.0;
0.0 0.0 C,.0 n) ) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0e+04 0.0;
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 l.Oe+04;
0.0 0.0 -. 1479d+04 0.0 0.0 -.1143d+03 0.0 0.0 -. 2529d+01 0.0..

0.0 -. 2697d+03 0.0 0.0;
0.0 0.0 0.0 -. 1491d+04 0.0 0.0 -. 1149d+03 0.0 0.0 -. 2536d+01l.
0.0 0.0 -. 2701d+03 0.0;
0.0 0.0 0.0 0.0 -. 5302d+05 0.0 0.0 -. 1816d+04 0.0 0.0..

-. 1790d+02 0.0 0.0 -. 6053d+03]
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bg=(O.O 0.0;

0.0 0.0;
0.0 0.0;
0.0 0.0;
0.0 0.0;
0.0 0.0;
0.0 0.0;
0.0 0.0;
0.0 0.0;
0.0 0.0;
0.0 0.0;
.1479d+04 0.0;

0.0 .1491d+04;

0.0 .5308d+05]

cg=[1.O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0;
0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0]

dg=zeros(2)

pause

disp('
disp(' Balanced realization of the X-29 state space representation')
disp(' 1)
(agbl,bgbl,cgbl,g,t]=obalreal(ag,bg,cg)
ag=agbl; bg=bgbl; cg=-gbl;
disp(' ')
disp(, Calculate the pcles and transmission zeros of the open loop plant')

disp(I 1)

poleg=eig(ag,, tzerog=tzero(ag,bg,cg,dg,

disp('

disp('
disp(' Determine the condition number of ag')
disp('

disp('
condag=cond(ag), rcondag=rcond(ag)

disp('

disp('

pause

disp(' )

]09



eisp(, << Design Specifications >>
disp('
disp(' 1). Robustness Spec. :-40 dB roll-off, -20 db @ 100 Rad/Sec.')
disp(' Associated Weigh:ing:')
disp('
disp(' -1 1000 '

disp(' W3ts) =-----------* I (fixd)')

disp(' 2 '

disp( ' s 2x2')
disp('

disp('
disp(' 2). Performance Spec.: minimizing the sensitivity function')
disp( ' as much as possible.')
disp(' Associated Weighting:')
disp('

disp('
disp(' -1 -1 (lO0s + 1) '

disp(' Wi(s) = Gamn * -------- * I-)

disp(' 100 2x2')
disp('
disp(' where "Gain" in this design is iteratively updated from 1')
w=logspace (-3,3,100);

k=1000; mn=(2 2]; tau=0.0;

nuw3i = [0.0 k]; dnw3i = [1.0 0 0];
svw3i = bode(nuw3i,dnw3i,w); svw3i = 20*loglO(svw3i);
nuwli = [100.0 1.0]; dnwli =[0 100.0];
svwli = bode(nuwli,dnwli,w); svwli = 20*loglO(BVWli);

aw2=-.001*eye(2); bw2=zeros(2); cw2=zeros(2); dw2=-.001*eye(2);
disp(')

disp( '

disp(' (strike a key to see the plot of the weightings .. '

pause
semilogx(w,svwli,w,svw3i)

grid

title( 'X-29 Design Specifications')
xlabel('Frequency - Rad/Sec')
ylabel('l/Wl & l/W3 - dB')
text( .01,0, '1/Wi(s)')
text(. 5, 100, ' /W3 ( ) '

meta x29specs

pause

dCI
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disp(' << Problem Formulation >>')

disp(' '

disp(' Form an augmented plant P(s) with these two weighting functions:')

disp(' ')

disp(' 1). Gam*Wl penalizing error signal "e"')

disp(' )

disp(' 2). W3 penalizing plant output "y"')

disp(' ')

disp(' and find a stabilizing controller F(s) such that the H2 norm')

disp(' of TF Tylul is minimized, i.e.')

disp(' '

disp(' min :Tylul: < I,,)
disp( ' F(s) 2-)
disp(' ')

disp(' where '

disp( '
disp(' Tylul = Gam*Wl*(I + GF) Gan * Wl S '

disp( ' 1 W3 * (I S ) '

disp(' W3*GF*(I + GF) '

disp(' '

disp(' '

disp(' '

disp(' (strike a key to continue ... )

pause

c

disp('
disp('
disp(' << DESIGN PROCEDUPE '

disp(' '

disp('****************************

disp(' * (Step 1]. Do plant augmentation (run AUGMENT.M or )

disp(' *AUGX29.M)

disp('*

disp(' ( Step 2]. Do H2 synthesis (run H2LQG.M)
disp('*
disp(' [Step 3]. Redo the plant augmentation for a

disp(' *new "Gamn" and rerun H2LQG.M
disp('*

disp( * [Step 4]. Redo the plant augmentation for a
disp(' *higher "Gamn" then run HINF.M
disp('************************** **

disp('

disp(' '

disp(' (strike a key to continue ... )

pause

c
disp('

disp(' '

dis:p('



disp(I Assign the cost coefficients "Gamn" with Gam=1 '

disp(' )
disp(' serving as the baseline design .... '

pack
gania= (1. 0,6.7];
ngaina~length(gama);
for i~l:ngana
Gam=gama (1,i)
k= 1000
disp(' '

disp(' - - - - - - - - - - - - - - - - - - - - - - - - - - - -

disp(' augment % Plant augmentation of the X-29 dynamics')
d isp ( -- - - - - - - - - - - - - - -- - - - - - - - - - - - - -
disp(' )

disp(' '

augx29
disp(' ')

disp(' ')

disp( ' (strike a key to continue ...
pause
c
disp(' ')

disp(' 1)
%disp(' Do state space balancing on the augmented plant if needed')
%disp(' ')

%disp(' ')

%[abal,bbal,cbal,g,t]=obalreal(A, [Bl B2], [Cl;C2])
%A=abal, Bl=bbal(:,l:2), E?=bbal(:,3:4), Cl=cbal(1:6, :), C2=cbal(7:8,:
disp(' ')

disp(' ')

disp(' The transmission zeros, poles and condition number of the augmented')
disp(' plant follow. In addition, determine if (A,Bl) & (A,B2) are '

disp(' stabilizable and if (Cl,A) & (C2,A) are detectable.')
disp(' '

disp(' )
tzeroaug-tzero(A,(Bl B2],[C1;C2],[Dll D12;D21 D22])
poleaugA=eig (A)

condaugA=cond (A)
rcondaugA=rcond (A)

eps=eps

toldef=lO*max(size(A) )*norm(Al1)*eps
tol=100*eps*norm( (A Bi])
[Alc,Blc,Clc,t,k]=ctrbf(A,B1,Cl,tol)

tol=10O*eps*norm([A B2])

[A2c,B2c,C2c,t,k]=ctrbf(A,B2,C2,tcl)
tollOO0*eps*norm( [A;Cl])

[Alo,Blo,Clo,t,k]=obsvf(A,B1,Cl,tol)
tol=100*eps*norm( [A;C2])
(A2o,B2o,C2o,t,k]=obs.f(A,B2,C2,tol)

pause
disp(' '

disp(' '
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disp (' -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
disp(' h2lqg % Running script file H2LQG.M for H2 optimization')
d isp ( I - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
aretype='Schur'
h2lqg
disp(' '

disp(' '

disp(' (strike a key to continue ... )I)
clear functions
pause
pltopt % Preparing singular values for plotting
end
disp(' '

disp(' '

disp(' (strike a key to continue ... )I)

pause
disp( '

dispV '
disp(I State space representation of controller (acp, bcp, ccp, dcp) '
disp(' ond CLTF Tylul (adl, bcl, ccl, dcl) and poles, controllability, '
disp(' Observability, and condition number of the controller. *

disp(' '

disp(' '

acp,bcp, ccp, dcp
polec=eig (acp)
tol=lOO*eps*norm( [acp bcp])
(acpc,bcpc,ccpc,t,k]=ctrbf(acp,bcp,ccp,tol)
tol=lOO*eps*norm( (acp;ccp])
[acpo, bcpo, ccpo, t, k)=obsvf (acl, bcp, ccp, tol)
condacp=cond(acp), rcondacp=rcond(acp)
acl,bcl,ccl,dcl
polet=eig (adl)
disp(' '

disp(' '

disp(' (strike a key to continue .. '

pause
disp(' '

disp(' *

disp(' Open loop state space representation of controller/plant series')
disp(' ')

[algf,blgf,clgf,dlgf]=series(acp,bcp,ccp,dcp,ag,bg,cg,dg)
polo1 e i g (a 1 f)
disp(' ')

dispV '

disp(' (strike a key to continue ... )
pause
disp( '

disp(' '
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disp(' Closed loop state space representation of controller/plant series,')
disp(' controllability, observability, and condition number of the closed')
disp(' loop acgf matrix. '

disp(' '

disp(' '

(acgf,bcgf,ccgf,dcgf]=feedbk(algf,blgf,clgf,dlgf,2)
tOl=1OO*eps*norm( (acgf bcgf])
(acgfc,bcgfc,ccgfc,t,k]=ctrbf(acgf,bcgf,ccgf,tol)
tol=100*eps*norm( [acgf;ccgfJ)
[acgfo,bcgfo,ccgfo,t,k]=obsvf(acgf,bcgf,ccgf,tol)
condacgf=cond (acgf)
disp(' ')

disp(' '

disp(' (strike a key to continue ... )')

pause
disp(' 1)
disp(' Poles of the closed loop system')
disp(' ')

polcl=eig (acgf)
end
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%x29hinf.m
diary x29hinf.dat
format short e
disp( '
disp( ')
disp(' This script file is designed to solve the Hinf control ')
disp(' problem for the X-29. The 14th order FDLTI model, in state ')
disp(' space form, is that of the X-29 aircraft and actuator dynamics.')
disp(' Two states are those of the aircraft dynamics, i.e., alpha ')
disp(' and q. The remaining 12 states are the dynamics of the ')
disp(' three, fourth order actuators, i.e., the canard, flaperon, and ')
disp(' strake actuators. The order of the unbalanced states is as ')
disp(' follows:')
disp( ')

disp(' alpha, q, dc, df, ds, dcdot, dfdot, dsdot, dcdbldot,')
disp(' dfdbldot, dsdbldot, dctrpldot, dftrpldot, dstrpldot')
disp( ')

disp(' Given the open loop transfer function G(s)=Cinv(Is-A)B+D, a ')
disp(' stabilizing controller F(s) will be found such that the Hinf norm')
disp(' of Tylul is less than or equal to one. ')
disp( ')
disp( ')

pause

cc
disp(' X-29 aircraft and actuator state space representation')
disp(' ')

disp(' ')
ag=[-.4181d+00 .9960d+00 -.2269d-01 -. 1213d+00 -. 1948d-01 -.9493d-03 ...

.4427d-04 -.6712d-04 .1451d-05 -.2162d-04 -.3540d-05 0.0 0.0 0.0;

.5474d+0l -. 3424d+00 .2585d+0l -.1386d+0l -.1058d+0l .3898d-02 ...

-. 1164d-01 -.6397d-02 -.2509d-03 -.5362d-03 -. 2912d-03 0.0 0.0 0.0;
0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0;
0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0;

0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0;
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0;
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0;
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0;
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.Oe+04 0.0 0.0;
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 i.0e+04 0.0;
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.Oe+04;
0.0 0.0 -. 1479d+04 0.0 0.0 -.1143d+03 0.0 0.0 -. 2529d+01 0.0 ...

0.0 -.2697d+03 0.0 0.0;
0.0 0.0 0.0 -. 1491d+04 0.0 0.0 -.1149d+03 0.0 0.0 -.2536d+01 ...

0.0 0.0 -. 2701d+03 0.0;
0.0 0.0 0.0 0.0 -. 5302d+05 0.0 0.0 -. 1816d+04 0.0 0.0 ...

-. 1790d+02 0.0 0.0 -.6053d+03]
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bg=[O.O 0.0;

0.0 0.0;
0.0 0.0;
0.0 0.0;
0.0 0.0;
0.0 0.0;
0.0 0.0;
0.0 0.0;

0.0 0.0;
0.0 0.0;

0.0 0.0;
.1479d+04 0.0;

0.0 .1491d+04;

0.0 .5308d+05]

cg=[1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0;
0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0]

dg=zeros(2)
pause

disp(' ')
disp(' Balanced realization of the X-29 state space representation')

disp(' I

[agbl,bgbl,cgbl,g,t]=obalreal(ag,bg,cg)

ag=agbl; bg=bgbl; cg=cgbl;

disp(' 1)
disp(' Calculate the poles and transmission zeros of the balanced open')

disp(' loop plant')

disp(' ')
poleg=eig(ag), tzerog=tzero(ag,bg,cg,dg)

disp('
disp(' ')

disp(' Determine determine the condition number of ag')

disp('

disp('

condag=cond(ag), rcondag=rcond(ag)

disp('

disp('

pause

disp(' )
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disp(' << Design Specifications >>
disp(' ')

disp(' 1). Robustness Spec. :-40 dB roll-off, -20 db @ 100 Rad/Sec.')
disp(' Associated Weighting:')

disp(' '

disp(' -1 1000 '

disp(' W3(s) ----- * (fixd)')
disp(' 2 2x2')
disp(' a
disp(I ')

disp(' '

disp(' 2). Performance Spec.: minimizing the sensitivity function')

disp(' as much as possible.')
disp(' Associated Weighting:')
disp(' ')

disp(I)

disp(' 1- .01(1008 + 1) '

disp(' Wi(s) = Gain -------- * I.)

disp( ' 2x2')

disp( ' (.OlB + 1)

disp(' '

disp(' where "Gamn" in this design is iteratively updated from 1')
w=logspace(-3,3,100);
k=1000; inn=[2 2]; tau=0.O;

nuw3i =(0.0 kJ; dnw3i =[1.0 0 0];

svw3i =bode(nuw3i,dnw3i,w); svw3i = 20*loglO(svw3i);
nuwli = (1.0 0.01); dnwli =[0.01 1.0];

svwli = bode(nuwli,dnwli,w); svwli = 20*loglO(svwli);
aw2=-0.00l*eye(2); bw2=zeros(2); cw2=zeros(2); dw2=-O.00l*eye(2);

disp(' '

disp(' '

disp(' (strike a key to see the plot of the weightings ... )')

pause

semilogx (w, svwl i ,w, svw3 i)

grid
title( 'X-29 Design Specifications')
xlabel('Frequency - Rad/Sec')
ylabel('l/Wl & l/W3 - db')

text( .01,0, 'l/Wl(s)'

text(.5,100,'l/W3(s)')

meta x29specs

pause
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c
disp(' << Problem Formulation >>')

disp(' '

disp(' Form an augmented plant P(s) with these two weighting functions:')
disp( '1)
disp(' 1). Gam*Wl penalizing error signal "e"')
disp(' ')

disp(' 2). W3 penalizing plant output "y"')

disp(' '

disp(' and find a stabilizing controller F(s) such that the Hinf norm')
disp(' of TF Tylul is less than or equal to one, i.e.,)
disp(' '

disp(' :Tylul: < or =1,')

disp(' F(s) inf')

disp(' '

disp(' where '

Ur '

disp(' Tylul = Gam*Wl*(I + GF) Gain * Wl *S '

disp( ' 1:W3 * (I S ) '

disp(' W3*GF*(I + GF) '

disp(' '

disp(' '

disp(' '

disp(' (strike a key to continue ... )'

pause

c

disp(' )
disp(' '

disp(' << DESIGN PROCEDURE '

disp(' '

disp('*****************************

disp(' * (Step 1]. Do plant augmentation (run AUGMENT.M or *)

disp(' *AUGX29.M)

disp( '*

disp(' * [Step 2]. Balance the augmented plant for better
disp(' *numerical condition if necessary

disp( '*

disp(' * [Step 3]. Do Hinf synthesis with "Gain" = 1
disp( '*

disp(' * [Step 4]. Redo the plant augmentation for a
disp(' *higher "Gamn" and rerun HINF.M
disp('*****************************

disp(' '

disp(' '

disp( ' (strike a key to continue ... )'

pause

c

disp(' '

disp(' '

disp(' '
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disp(' Assign the cost coefficients "Gan" with Gaxn=1
disp(I )
disp(I serving as the baseline design .... '

gaina=[12.5J;
ngaxna= length (gama);
for i=l:ngana

Gam=gama(l, i)
k=1000

disp(' '

disp(' - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
disp(' augment % Plant augmentation of the X-29 dynamics')
disp(' - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
disp('
disp(' '

augx29
disp(' '

disp(' 1)

disp(' (strike a key to continue ... )

pause

c

disp(' ')

disp( )
%disp(' Do state space balancing on the augmented plant if needed')

%disp(' '

%disp(' '

%(abal,bbal,cbal,g,t]=obalreal(A, [Bi B2J, [Cl;C2J)

disp(' ')

disp(I ')

disp(' The transmission zeros, poles and condition number of the augmented')
disp(' plant follow, in addition, determine it (A,Bl) & (A,B2) are '

disp(' stabilizable and if (Cl,A) & (C2,A) are detectable.')

disp('

disp(' '

tzeroaug=tzero(A,[Bl B2J,[Cl;C2],[Dll D12;D21 D22]), poleaugA=eig(A)
condaugA=cond(A), rcondaugA=rcond(A)

eps=eps

toldef=lO*max(size(A) )*norm(A,l)*eps

tol=lOO*eps*norm( (A B])
(Alc,Rlc,Clc,t,k]=ctrbf(A,B1,Cl,tol)

tol=lOO*eps*norm( [A B2]J)

[A2c,B2c,C2c,t,k]=ctrbf(A,B2,C2,tol)
tol=lOO*eps*norm( [A;Cl])
(Alo,Blo,Clo,t,k]=obsvf(A,B1,Cl,tol)

tol=1OO*eps*norm( (A;C2J)
[A2o,B2o,C2o,t,k]=obsvf(A,B2,C2,tol)

pause

disp(' '

disp(' '
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disp(' --------------------------------

disp(' hinf % Running script file HINF.M for Hinf optimization')
d isp (' - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
aretype= Schur'
hinf
disp(' '

disp(' 1)
disp(' (strike a key to continue ... )I)

clear functions
pause
disp(')
disp(' '

disp(' State space representation of the full order controller')
disp(' (acp, bcp, ccp, dcp) with its poles and condition number')
disp(' '1)
acp, bcp, ccp, dcp
polec=eig (acp)
condacp~'cond (acp)
disp(' 1)
disp(' Minimal realization of the controller')
disp(' ')

toldef=1O*max(size(acp))*norm(acp,1)*eps
tol=10O*eps*norm( [acp bcp;rcp dcp])
(acpm, bcpm, ccpm, dcprn] =minreal (acp, bcp, ccp, dcp)
disp(' 1)
disp(' Balanced realization & model reduction of the minimal controller')
disp(' 1)
[acpbl,bcpbl,ccpbl,g,t]=obalreal(acpm,bcpm,ccpm)

elim=I 10)
facpr~bcpr,ccpr~dcpr]=modred(acpbl,bcpbl,ccpbl,dcpm,elim)
disp(' 1)

disp(' Poles, controllability, observability, and condition of the )
disp(' balanced, reduced order controller')
disp( )
poleacpr=eig (acpr)
tol=l0O*epB*norm( (acpr bcpr])

[acpc, bcpc, ccpc, t, k]=ctrbf (acpr ,bcpr, ccpr, tol)
tol=l00*eps*norm( [acpr;ccpr])

(acpo, bcpo, ccpo, t, k )=obsvf (acpr, bcpr, ccpr, tol)
condacpr=cond(acpr), rcondacpr=rcond(acpr)
acp=acpr; bcp=bcpr; ccp=ccpr; dcp=dcpr;

disp( ' )

disp(' CLTF Tylul (adl, bcl, ccl, dcl) and its poles (reduced order)')

[acl,bcl,ccl,dcl]=lftf(sysp,dimp,acp,bcp,ccp,dcp)
polet=eig (adl)
pause

disp(' '

disp(' '
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pltopt % Preparing singular values for plotting
end
disp('
disp('
disp(' (strike a key to continue ... ))

pause
disp('
disp(' ')

disp(' Open loop state space representation of controller/plant series')
disp('
[algf,blgf,clgf,dlgf]=series(acp,bcp,ccp,dcp,ag,bg,cg,dg)
disp(' )

disp(' ')

disp(' (strike a key to continue ...))

pause
disp( ')

disp('
disp(' Closed loop state space representation of controller/plant series,')
disp(' controllability, observability, and condition number of the closed')
disp(' loop acgf matrix. ')
disp( ')

disp( ')

(acgf,bcgf,ccgf,dcgf]=feedbk(algf,blgf,clgf,dlgf,2)
tol=lOO*eps*norm([acgf bcgf])
(acgfc,bcgfc,ccgfc,t,k]=ctrbf(acgf,bcgf,ccgf,tol)
tol=lOO*eps*norm([acgf;ccgf])
[acgfo,bcgfo,ccgfo,t,k]=obsvf(acgf,bcgf,ccgf,tol)
condacgf=cond(acgf)
disp('
disp('
disp(' (strike a key to continue ... )
pause
disp(' ')

disp(' Poles of the closed loop system')
disp(' ')

polcl=eig(acgf)
end
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% augx29.m

% Plant Augmentation for the X-29 H2 and Hinf problem as W3 is not a
% proper transfer function. Inclules contingency for adding W2 to

% ensure d12 is full column rank. This script file is designed for
% the X-29 system without theta as a state, ie, 2 inputs & 2 outputs.
% This script file is a modified version -)f the aughimat.m M-file taken

% from the Matlab Robust-Control Tool Box [Ref 7].

disp('

disp('

disp(' << Plant Augmentation
Gaxn=gama(1,i)
%Gan input(' Input the cost coefficient "Gamn"

cgb 1 /k*(cg(1,:)*ag*ag;cg(2,:)*ag*ag*ag*tau+cg(2,:)*ag*ag]

dgb 1 /k*[cg(1,:)*ag*bg;cg(2,:)*ag*ag*bg*tau]
nwl =Gain*[dnwli;O 0;0 O;dnwli]

dwl nuwli
sysw2=[aw2 bw2;cw2 dw2]; xw2=2;
(A,B1,B2,Cl,C2,Dli,D12,D21,D22]=augx29pl(ag,bg,cg,cgb,dg,dgb,nwl,dwl,sysw2,xw2

inn)
disp(' '

disp(' - - - State-Space (A,Bl,B2,Cl,C2,Dl,D12,D21,D22) is ready for')
disp(' the Small-Gain problem--

---- End of AUGx29.m--------% -z
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%augx29pl.m

function
[a,bl,b2,cl,c2,dll,dl2,d21,d22]=augx29pl(ag,bg,cga,cgb,dga,dgb,num~den,BYS,x,mn)

% [A,Bl,B2,Cl,C2,Dll,Dl2,D2l,D22]AUGX29PL(iG,BG,CG,cCB,DG,DGB,NUM,DEN,SYS,X,MN)
% produces the augmented plant for the X-29 h2 and hinf problem for

% an improper W3 weighting and W2 added to make d12 full column rank.

% This script file is a modified version of the augpl.m function taken
% from the Matlab Robust-Control Tool Box [Ref 7].

% Weighted Plant

% Xg = Ag Xg + Bg Ug

% j~Ygaj = jCgaj Xg + jDgaj Ug

% YgbI jCgbj :Dgb:

%Weighting Wl Weighting W2

%Xwl = Awl Xwl + Bwl Uwl Xw2 = Aw2 Xw2 + Bw2 Uw2

%Ywl = Cwl Xwl + Dwl Uwl Yw2 = Cw2 Xw2 + Dw2 Uw2

% Over all augmented plant

% Xg Ag 0 0 1 Xg :0 Bg l
% : xwl: + ::U2:
% xwl: :-Bwlcga Awl 0 1 Xw2' :Bwl -BwlDga:

% Xw2: 0 0 Aw2 1:0 Bw2

% Ylaj -DwlCga Cwl 0 1 Xg 1 Dwl -DwlDga :U1

% Ylbj 0 0 Cw2 I jXwl: 10 Dw2 I U2=Ug:
%:Ylcj : Cgb 0 0::xw2: + 0 Dgb

% Y2 I -Cga 0 0 1 -Dga

% State Space of Weighting Wl & W2:

[awl,bwl,cwl,dwlJ = tfm2ss(num,den,mn(l),mn(2))

Eaw2,bw2,cw2,dw2J = Bys2ss(sys,x)

% State Space of Augmented Plant

---- A matrix

[rag,cagJ = size(ag);

[rawl,cawlJ = Bize(awl);
[raw2,caw2] = size(aw2);
a = [ag zeros(rag,cawl) zeros(rag,caw2);-bwl*cga awl zeros(rawl,caw2);

zeros(raw2,cag) zeros(raw2,cawl) aw2];
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-B matrix

[rbg,cbg] = size(bg);
Crbwl,cbwl] size(bwl);

[rbw2,cbw2l = ize(bw2);
bl = (zeroB(rbg,cbwl);bwl;zeros(rbw2,cbwl)];

b2 = [bg;-bwl*dga;bw2];

-Cmatrix

[rcgb,ccgbl = ize(cgb);
[rcwl,ccwl] size(cwl);
[rcw2,ccw2] =size(cw2);

cl = (-dwl*cga cwl zeroB(rcwl,ccw2);zeros(rcw2,ccgb) zerog(rcw2,ccwi) cw2;
cgb zeros(rcgb,ccwl) zeroB(rcgb,ccw2)];

(rcga,ccga] =size(cga);
c2 = [-cga zeros(rcga,ccwi) zeros(rcga,ccw2)];

---- D matrix

(rdgb,cdgb] =size(dgb);

(rdwl,cdwl) =size(dwl);
[rdw2,cdw2] =size(dw2);
dii = [dwi;zeros(rdw2,cdwi);zeros(rdgb,cdwi)];

d12 = [-dwi*dga;dw2;dgb];
(rdga,cdgaJ = size(dga);
d2l = eye(rdga);

d22 = -dga;

---- End of ATJGX29PL.M ---- %
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%x29analy .m
diary x29analy.dat
format short e

disp('
disp('

dir-)(I This script file analyzes the results of Hinf synthesis Of the')
disp(' X-29 MIMO model by plotting resultant system return difference')
disp(' singular values, calculating the closed loop poles/zeros,and '

disp(' mak ng Bode plots')
disp('

disp('
disp(' The unaugmented state apace plant representation')

disp(' 1
disp( )
ag~bg,cg,dg

disp('
disp('

pause
disp(' State space representation of the controller')

disp('

disp('
acp, bcp, ccp,dcp

disp('

disp('

pau qe
disp(' Open loop state space representation of controller/')

disp(' plant series')

disp('

disp('

algf,blgf,clgf,dlgf
[alfg,bifg,clfg,dlfg]=series(ag,bg,cq,dg,acp,bcp,ccp,dcp)

disp('
disp('
disp(' Compute singular value plot of return difference matrices')

disp('

disp('
w=logspace(-3,3,lOO);

svg=sigma(ag,bg,cg,dg,3,w); svg=20*loglo(svg);

semilogx(w,svg)

title('X-29 SV PLOT (I + G)')
xlabel('FREQUENCY - rad/sec')

ylabel('SV - dB')
grid

meta x29svl
pL se
sVgf=Sigma(algf,blgf,clgf,dlgf,3,w); svgf=20*loglO(svgf);

semilogx (w, Bvgf)

title('X-29 SV PLOT (I + F;
xlabel('FREQUENCY - rad/sec')

ylabel('SV - dB')

grid

meta x29sv2
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pause
svfg=sigma(alfg,blfg,clfg,dlfg,3,w); svfg=20*loglO(svfg);
semilogx(w, svfg)
title('X-29 SV PLOT (I + FG)')
xlabel(IFREQUENCY - rad/sec')

ylabel('SV - dB,)
grid

meta x29sv3
pause
svgf=sigma(algf,blgf,clgf,dlgf,4,w); svgf=20*loglO(svgf);
semilogx (w, svgf)
title('X-29 SV PLOT (I + inv(GF))')

xlabei('FREQUENCY - rad/sec')

ylabel('SV - dB,)

grid

meta x29sv4
pause
svfg=sigma(alfg,blfg,clfg,dlfg,4,w); svfg=20*loglO(evfg);

semilogx(W, sVfg)
title('X-29 SV PLOT (I + inv(FG))')
xlabel('FREQUENCY - rad/sec')

ylabel('SV - dB')
grid

meta x29sv5

pause
svloop=sigma(algf,blgf,clqf,dlgf,l,w); sVloop=20*loglO(svloop);
semilogx (w, avicop)

title('X-29 SV PLOT (GF)')
xlabel( 'FREQUENCY - rad/sec')
ylabel('SV - dB')

grid

meta x29sv6
pause
disp('

disp('
disl-(' Closed loop state space representation of controller/plant series')

disp('

disp('

acgf ,bcgf, ccgf ,dcgf
tzerocgf~tzero( acgf ,bcgf,cg, dcgf)

disp('

disp('
pause
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disp(' Poles and zeros of the closed loop controller/plant system)
disp(' (acgf, bcgf, ccgf, dgcf) '

disp('
disp(I
disp(' output alpha/q vs input 1I'
disp(' )
[z,p,k]=ss2zp(acgf,bcgf,ccgf,dcgf,l)
pause
disp('
disp(' output alpha/q vs input 2 '

disp(' 1
[z,p,k]=ss2zp(acgf,bcgf,ccgf,dcgf,2)
pause
disp('
disp('
disp(' Open loop Bode plots Of outputs VS inputs')
disp('
disp('
[magl,phasel]=bode(algf,blgf,clgf,dlgf,1,w); magl=20*loq1O(mag1j;

[mag2,phase2]=bode(algf,blgf,clgf,dlgf,2,w); mag2=20*log1O(mag2);

semilogx(w,magl(:, 1))

title('X-29 OPEN LOOP BODE PLOT INPUT 1 / alpha (GF)')

xlabel('FREQUENCY - rad/sec')

ylabel('GAIN - dB')

grid

meta x29bodel

pause
semilogX(w,magl(: ,2))

title('X-29 OPEN LOOP BODE PLOT INPUT 1 /q (GF)')

xlabel('FREQUENCY - rad/sec')

yl'abel('GAIN - dB')

grid

meta x29bode2

pause
semilogx(w,mag2(:, 1))

title('X-29 OPEN LOOP BODE PLOT INPUT 2 Ialpha (GF)')

xlabel('FREQUENCY - rad/sec')

ylabel('GAIN - dB')

grid
meta x29bode3

pause
semilogx(w,mag2(: ,2))

title('X-29 OPEN LOOP BODE PLOT INPUT 2 /q (GF)')

xlahel('FREQUENCY - rad/sec')

ylabel('GAIN - dB')
grid
meta x29bode4

disp('
disp('
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disp(I Closed loop Bode plots of outputs vs inputs')
disp('

disp('
(magl,phasel]=bode(acgf,bcgf,ccgf,clcgf,l,w); magl=20*logIO(magl);
(rag2,phase2]=bode(acgf,bcgf,ccgf,dcgf,2,w); mag2=20*loglO(mag2);
semilogx(w,magl(:,l))
title('X-29 CLOSED LOOP BODE PLOT INPUT 1 / alpha)
xlabel('FREQUENCY - rad/sec')
ylabel('GAIN - dB')
grid

meta x29bode5
pause

Bemilogx(w,magl(:,2))
title('X-29 CLOSED LOOP BODE PLOT INPUT 1 Iq
xlabel('F'REQUENCY - rad/sec')
ylabel('GAIN - dB')
grid

meta x29bode6
pause
sernilogx(w,mag2( :,))
title('X-29 CLOSED LOOP BODE PLOT INPUT 2 /alpha '
xlabel('FREQUENCY - rad/sec')
ylabel('GAIN - dB')
grid
meta x29bode7

pause

semilogx(w,mag2(:,2))
title('X-29 CLOSED LOOP BODE PLOT INPUT 2 /q '

xlabel('FREQUENCY - rad/sec')
ylabel('GAIN - dB')
grid

meta x29bode8

pause

end
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%x29resp.m
diary x29resp.dat
format short e
disp(' '
disp('
disp(' This script file is designed to calculate and plot the time')
disp(' response of the augmented X-29 (controller/plant closed loop')
disp(' series) to a 1 degree / 1 second step input from each of')
disp(' the two inputs separately.')
disp( '
disp('
disp(' Setting up the time vectors')
disp(' ')
time=[0:0.O1:4]
%stas=[l 0 0 0 0;0 1 0 0 0;0 0 1 0 0;0 0 0 1 0;0 0 0 0 1]
%ccgfwc=[zeros(5,18) stas zeros(5,6)]
%dcgfwc=zeros(5,2)
stas=[l 0 0 0 0 0 0 0;0 1 0 0 0 0 0 0;0 0 1 0 0 0 0 0;0 0 0 1 0 0 0 0;...
0 0 0 0 1 0 0 0;0 0 0 0 0 1 0 0;0 0 0 0 0 0 1 0;0 0 0 0 0 0 0 1]
ccgfwc=[zeros(8,15) stas zeros(8,6)]

dcgfwc=zeros(8,2)

disp(' ')
disp(' Plotting alpha, q, dc, df, ds, dcdot, dfdot, and dsdot')

disp(' responses to a 0.01745 rad / 1 second step from input one')

disp(' ')
u=[O.01745*ones(1,101) zeros(1,300);zeros(l,401)]'

(y]=lsim(acgf,bcgf,ccgfwc,dcgfwc,u,time)

%[y]=lsim(acgf,bcgf,ccgf,dcgf,u,time)

plot(time,y(:,l))
title('X-29 alpha RESPONSE TO 0.01745 rad / 1 sec STEP (INPUT 1)')

xlabel('TIME - sec')
ylabel('radians')

grid

meta x29rspll
pause

plot(time,y(:,2))
title('X-29 q RESPONSE TO 0.01745 rad / 1 sec STEP (INPUT 1)')
xlabel('TIME - sec')

ylabel('radians/second')

grid

meta x29rspl2
pause
plot(time,y(:,3))
title('X-29 DC FOR 0.01745 rad / 1 sec STEP (INPUT 1)')

xlabel('TIME -sec')

ylabel('radians')
grid

meta x29rspl3

pause
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plot(time,y(:,4))

title('X-29 DF FOR 0.01745 rad / 1 sec STEP (INPUT 1)')

xlabel('TIME - sec')

ylabel ('radians')
grid

meta x29rsp14

pause
plot(time,y(:,5))

title('X-29 DS FOR 0.01745 rad I sec STEP (INPUT 1)')

xlabel('TIME - sec')
ylabel( 'radians')

grid

meta x29rsp15
pause
plot(time,y(: ,6))

title('X-29 DCDOT FOR 0.01745 rad /1 sec STEP (INPUT 1)')

xlabel('TIME - sec')

ylabel( 'radians/second')

grid

meta x29rspl6

pause
plot(time,y(: ,7))

title('X-29 DFDOT FOR 0.01745 rad /1 sec STEP (INPUT 1)')

xlabel('TIME - sec')
ylabel( 'radians/second')

grid

meta x29rspl7
pause

plot(time,y(:,8))

title('X-29 DSDOT FOR 0.01745 rad /1 sec STEP (INPUT 1)')

xlabel('TIME - sec')
ylabel( 'radians/second')

grid

meta x29rspiS
pause

disp('

disp(' Plotting alpha, q, dc, df, ds, dcdot, dfdot, and dsdot')

disp(' responses to a 0.01745 rad / 1 second step from input two')

disp(' 1
u=[zerOB(l,401);0.01745*ones(1,10l) zeros(1,300)]
fy]=lsim(acgf,bcgf,ccgfwc,dcgfwc,u,time)

%[y]=lsim(acgf,bcgf,ccgf,dcgf,u,time)

plot (time, y( :,l))

title('X-29 alpha RESPONSE TO 0.01745 rad /1 sec STEP (INPUT 2)')

xlabel('TIME - sec'
ylabel ('radians')
grid

meta x29rsp2l

pause
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plot(time,y(:,2))
title('X-29 q RESPONSE To 0.01745 rad / 1 sec STEP (INPUT 2)')
xlabel('TIME - sec')
ylabel( 'radians! second')
grid
meta x29rsp22
pause
plot(time,y(: ,3))
title('X-29 DC FOR 0.01745 rad I sec STEP (INPUT 2)')

xl hp *I TMP- sec'I)

ylabel ( radians')
grid
meta x29rsp23
pause
plot(tinie,y(: ,4))
title('X-29 DF FOR 0.01745 rad /1 sec STEP (INPUT 2)')
xlabel('TIME - sec')
ylabel( 'radians')
grid
meta x29rsp24
pause
plot(time,y(: ,5))
title('X-29 DS FOR 0.01745 rad I1 sec STEP (INPUT 2)')
xlabel('TIME - sec')
ylabel( 'radians')
grid
meta x29rsp25
pause
plot(time,y(: ,6))

title('X-29 DCDOT FOR 0.01745 rad /1 sec STEP (INPUT 2)1)

xlabel('TIME - sec')
ylabel( 'radians/second')
grid
meta x29rsp26

pause

plot(time,y(: ,7))
title('X-29 DFDOT FOR 0.01745 rad /I sec STEP (INPUT 2)')

xlabel('TIME - sec')

ylabel( 'radians/second')

grid

meta x29rsp27

pause

plot(time,y(:,8))
title('X-29 DSDOT FOR 0.01745 rad /1 sec STEP (INPUT 2)')
xlabel('TIME - sec')

ylabel( 'radians/second')

grid
meta x29rsp28

end
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%x29schmr.m
diary x29schmr.dat
format short e
disp(I 1
disp(' 1
disp(' This script file employs Schur Model Reduction '

disp(' to reduce the order of the minimal, balanced hinf controller. '

disp(' The reduced order controller is then combined in series with the '

disp(' balanced X-29 plant. The reduced order model and minimal, balanced')
di13,, model S"! 2ode plots are 7omparec! ai.c tl= eLL: system plotted.')
disp(' Additionally, the reduced order controller/balanced plant series')
disp(' is compared with the minixcal, balanced controller/plant series.')
disp('
disp(' 1
disp(' State space representation of the minimal, balanced hinf controller')
disp(' 1
acp, bcp, ccp, dcp
poleacp=eig (acp)
condacp=cond (acp)
disp(' 1
disp(' 1
disp(' Schur Model Reduction of the hinf controller')
disp(' 1
facph,bcph,ccph,dcph,totbnd,hsv]=schmr(acp,bcp,ccp,dcp,l,'O)
poleacph=eig (acph)
condacph=cond(acph)
disp(' 1
disp(' Computing the SV Bode plot of the minimal & reduced order controllers')
disp(' 1
w=logspace(-3,3,lOO);
svcp=sigma(acp,bcp,ccp,dcp,l,w); svcp=20*loglO(svcp);
svcph=sigma(acph,bcph,ccph,dcph,l,w); svcph=20*loglO(svcph);
(acpher,bcpher,ccpher,dcpher]=addss(acp,bcp,ccp,dcp,acph,bcph,-ccph, -dcph);
sver=sigma(acpher,bcpher,ccpher,dcpher,l,w); sver=20*loglO(sver);
totbnd=20*loglO(totbnd) *ones(w);
semilogx (w, svcp)
title('15th ORDER X-29 CONTROLLER')
xlabel('FREQUENCY - rad/sec')
ylabel('SV - dB')
grid
meta x29schrl
pause
semi4logx(w, svcp,w, svcph)
title('l0th & 15th ORDER X-29 CONTROLLERS')
xlabel('FREQUENCY - rad/sec')
ylabel('SV - dB')
grid
meta x29schr2
pause
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semilogx(w, totbnd,w, sver)
title('l0th ORDER X-29 CONTROLLER ERROR ZERROR BOUND')
xlabel('FREQUENCY - rad/sec')
ylabel('SV - dB')
text(.02,6,'error bound')
grid
meta x29schr3
pause
disp(' 1
disp(' State space representation of the minimal, oaianced control ler/plant')
disp(' series and ROM controller/balanced plant series (open loop)')
disp(' 1
algf,blgf,clgf,dlgf
polealgfeig(algf)
condalgf=cond (algf)
(algfrc,blgfrc,clgfrc,dlgfrc]=series(acph,bcph,ccph,dcph,ag,bg,cg,dg)
polealgfrc=eig (algfrc)
condalgfrc=cond (algfrc)
disp(' 1
diap(' Computing the SV Bode plot of the minimal, balanced controller /plant')
disp(' series and the ROM controller/balanced plant series.')
disp(' 1
svlgf=sigma(algf,blgf,clgf,dlgf,l,w); sv1clf=20*loglO(svlgf);
svrc=sigma(algfrc,blgfrc,clgfrc,dlgfrc,l,w); svrc=20*loglO(svrc);
[algfer,blgfer,clgfer,dlgfer)=addss(algf,blgf,clgf,dlgf,algfrc,blgfrc,..
-clgfrc,-dlgfrc);
svlgfer=sigma(algfer,blgfer,clgfer,dlgfer,l,w); svlgfer=20*loglO(svlgfer);
Bemilogx (w, svlgf ,w, Bvrc)
title('l0th & 15th ORDER X-29 CONTROLLERS IN SERIES WITH X-29 PLANT')
xlabel('FREQUENCY - rad/sec')
ylabel('SV - dB')
grid
meta x29schr4
pause
semilogx(W, sVlgfer)
title('l0th ORDER X-29 CONTROLLER/PLANT SERIES ERROR')
xlabel('FREQUENCY - rad/sec')
ylabel('SV - dB')
grid
meta x29schr5
end
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APPENDIX B

X-29 MODEL STATE SPACE REALIZATIONS

Open loop state space representation of the uncompensated

X-29 model.

ag =

Columns 1 through 6

-4.1810e-01 9.9600e-01 -2.2690e-02 -1.2130e-01 -1.9480e-02 -9.4930e-04

5.4740e+00 -3.4240e-01 2.5850e+CO -1.3860e+00 -l.056Oe+O0 3.8980e-03

0 0 0 0 0 i.C30Oe+0O
0 0 0 0 0 0
0 0 0 0 0 0
o 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 -1.4790e+03 0 0 -1.1430e+02
0 0 0 -1.4910e+03 0 0
0 0 0 0 -5.3020e+04 0

Columns 7 through 12

4.4270e-05 -6.7120e-05 1.4510e-06 -2.1620e-05 -3.5400e-06 0

-1.1640e-02 -6.3970e-03 -2.5090e-04 -5.3620e-04 -2.9120e-04 0
0 0 0 0 0 0

l.O000e+00 0 0 0 0 0

0 l.O000e+00 0 0 0 0
0 0 l.0000e+00 0 0 0

0 0 0 1.O000e+00 0 0
0 0 0 0 l.O000e+00 0
0 0 0 0 0 1.O000e+04
0 0 0 0 0 0
0 0 0 0 0 0
0 0 -2.5290e+00 0 0 -2.6970e+02

-1.1490e+02 0 0 -2.5360e+00 0 0

0 -1.8160e+03 0 0 -1.7900e+01 0
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Columns 13 through 14

0 0
o 0
o 0
0 0
o 0
0 0
0 0
o 0
0 0

1.0000e+04 o
o 1.0000e+04
o 0

-2.7010e+02 0

o -6.0530e+02

bg

o 0
o 0
0 0
o 0
o 0
o 0
0 0
0 0
o 0
o 0
o 0

1.4790e+03 0

o 1.4910e+03
o 5.3080e+04

Columns 1 through 12

1 0 0 0 0 0 0 0 0 0 0 0

o 1 0 0 0 0 0 0 0 0 0 0

Columns 13 through 14

0 0
0 0

dg
0 0
0 0
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Closed loop state space representation of the H. compensated

X-29, i.e., optimal-performance model.

acgf =

Columns 1 through 6

-1.0380e-02 2.5396e-04 -2.0139e-02 3.3550e-01 6.9246e-01 -7.5674e-02
-7.4356e-04 -1.0502e-02 -3.6887e-01 -2.2137e+00 -1.9108e+00 -3.3622e-01
-9.6973e-02 1.5535e-01 -2.5920e+00 -1.1063e+02 -6.1722e+O1 -4.9836e+00
6.6210e-01 1.2903e+00 1.1697e+02 -1.5192e+02 -1.7331e+02 -6.7749e+Ol
8.7596e-01 1.1040e+00 8.0559e+01 -2.7211e+02 -3.5450e+02 -1.4092e+02

-1.0283e-01 2.6001e-01 -1.9307e+00 8.7694e+01 1.8904e+02 -8.6324e+00
1.6027e-01 3.0656e-01 9.7828e+00 -6.1279e+Ol -1.1054e+02 1.4974e+01

-1.1326e-01 7.9258e-02 -5.0472e+00 5.0715e+01 8.8977e+01 -1.7586e+O1
2.0666e-02 8.9411e-02 1.4269e+00 -9.0525e+00 -1.7498e+O1 -1.1775e-01

-2.9553e-02 2.4729e-02 -i.2692e+00 1.3117e+01 2.2217e+01 -4.2756e+00
6.6863e-03 3.3912e-02 4.9473e-01 -2.8382e+00 -5.6200e+00 -1.2383e-01
2.6231e-03 3.u885e-03 1.3971e-01 -1.1509e+00 -2.0618e+00 2.3346e-01
6.2838e-03 4.2536e-03 3.1809e-01 -2.7681e+00 -4.8951e+00 6.4728e-C1

-2.3165e-03 1.5649e-03 -1.0068e-01 1.0309e+00 1.7591e+00 -3.2588e-01
-2.9225e-04 -8.3162e-04 -1.8149e-02 1.2658e-01 2.3676e-01 -1.2454e-02
1.9047e+00 8.3656e-01 1.3368e+01 2.6068e+01 -1.0156e+O1 1.7859e+01
1.6249e+00 -6.9125e+00 -8.4058e+O1 -5.2856e+02 -5.2865e+02 -7.8929e+O1

-5.9083e+00 7.4810e+00 8.4663e+01 6.4688e+02 7.1853e+02 6.9016e+01
-4.0509e+00 3.3677e+00 3.5998e O1 3.1630e+02 3.7254e+02 2.5569e+01
-4.2915e+00 -3.9162e-01 -1.1427e+O1 4.9115e+01 1.2470e+02 -2.1801e+O1
5.5297e+00 3.0377e+00 4.6432e+01 1.1967e+02 1.2039e+01 5.9368e+01

-2.4640e+00 7.1488e-01 5.2026e+00 9.6072e+01 1.3567e+02 -9.1372e-01
-9.0599e-01 -l.0399e+00 -1.4394e+O1 -5.8765e+O1 -3.8942e+O1 -1.6421e+O1
1.8418e+00 4.5560e-01 8.5033e+00 -3.1257e-01 -3.3913e+O 1.2907e+Ol

-2.6872e+00 -7.4178e-01 -1.3371e+O1 -5.1094e+00 4.4225e+01 -1.9782e+uL
4.9869e-01 1.6324e-01 2.8015e+00 2.7956e+00 -6.4631e+00 3.9870e+00
2.7973e-01 1.2875e-01 2.0369e+00 4.2538e+00 -1.0900e+00 2.6956e+00

-1.8133e-01 9.1365e-02 8.680le-01 9.8691e+00 1.2627e+01 4.1132e-01
3.7460e-02 1.4831e-02 2.4260e-01 3.9552e-01 -3.1035e-01 3.3121e-01
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Columns 7 through 12

7.3362e-02 1.0724e-01 5.6964e-03 -3.1043e-02 -2.5046e-03 2.2455e-03

-4.7184e-01 1.3951e-01 9.9626e-02 2.1029e-02 -3.6276e-02 4.2633e-03

-7.9436e+00 4.4151e+00 1.8861e+00 -9.1523e-02 -6.9471e-01 1.1167e-01

-7.2469e+O1 -8.9555e+00 1.2570e+O1 1.0305e+01 -4.3749e+00 4.5774e-02

-1.0508e+02 -4.8144e+O1 1.3934e+Ol 2.2625e+Ol -4.6125e+00 -6.6097e-01

-1.4401e+01 1.6726e+O1 4.4932e+00 -1.8884e+00 -1.6597e+00 3.6889e-01

-8.7251e+O1 -3.1218e+O1 3.5283e+Ol 1.7517e+O1 -1.0706e+O1 5.6280e-01

8.7848e+O1 -8.6275e+Ol -3.9404e+O1 3.9886e+O1 1.2111e+Ol -3.9614e+00

-3.6523e+O1 2.3802e+O1 -2.8890e+O1 -7.8925e+OU 2.3488e+O1 -2.9093e+00

1.8198e+O1 -4.9880e+O1 1.1589e+O1 -5.9065e+Ul 8.0195e-01 6.3343e+00

-1.0989e+O1 2.5817e+00 -2.3453e+O1 5.7327e+00 -3.5512e+O1 1.2254e+O1

-2.6019e+00 3.0928e+00 -3.2759e+00 7.3988e+00 -1.2501e+O1 -9.3120e+00

-5.6900e+00 7.9380e+00 -6.4217e+00 2.0670e+O1 -2.1244e+01 -6.7622e+01

1.5521e+00 -3.5151e+00 8.8043e-01 -9.0745e+00 2.0510e+00 1.3813e+O1

3.7429e-01 -2.5131e-01 6.0387e-01 -6.0252e-01 2.0077e+00 2.4844e+00

1.1270e+01 -1.5754e+O1 -4.6012e+00 2.0579e+00 1.7023e+00 -3.8322e-01

-1.5310e+02 3.9986e+01 3.2641e+O1 8.8556e+00 -i.1758e+O 1.2624e+00

1.8002e+02 -2.1721e+O1 -3.4040e+01 -1.5764e+01 1.2173e+01 -9.1123e-01

8.5846e+O1 -2.5523e+00 -1.4893e+O1 -9.1686e+00 5.2950e+00 -2.5765e-01

6.4678e+00 2.5033e+O1 3.2072e+00 -6.0269e+00 -1.2489e+00 5.5221e-01

4.5711e+O1 -5.0002e+O1 -i.5278e+O1 5.4075e+00 5.9970e+00 -1.2395e+00

2.3763e+O1 7.7899e+00 -2.6644e+00 -4.3353e+00 9.1071e-01 1.2121e-01

-1.9057e+O1 1.1990e+O1 5.2666e+00 -3.8111e-01 -1.9217e+00 3.1606e-01

3.3588e-o00 -1.2758e+01 -2.7551e+00 2.3189e+00 1.0341e+00 -2.9692e-01

-6.5445e+00 1.9154e+O1 4.3892e+00 -3-3116e+00 -1.6422e+00 4.4927e-01

1.7603e+00 -3.7337e+00 -9.3719e-01 5.9074e-01 3.4906e-01 -8.8705e-02

1.7807e+00 -2.3549e+00 -7.0399e-01 2.9675e-01 2.6021e-01 -5.7508e-02

2.5756e+00 3.0174e-01 -3.8191e-01 -3.5512e-01 1,3415e-01 8.4243e-04

1.8703e-01 -2.9846e-01 -8.2715e-02 4.1984e-02 3.0670e-02 -7.1986e-03
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Columns 13 through 18

-5.3501e-03 2.0318e-03 1.7690e-04 -9.5355e+00 3.4391e+00 4.5069e+00

9.4699e-03 3.5463e-03 -9.9307e-04 7.6335e-02 7.7386e+00 7.6895e+00
8.8814e-02 9.5436e-02 -1.5234e-02 -4.3986e+Ol 4.4315e+Ql 4.9092e+O1

2.5904e+00 -1.6803e-03 -l.7911e-Ol 3.1638e+02 -1.0033e+02 -1.3583e+02

4.9202e+00 -6.5175e-01 -2.7845e-01 4.1820e+02 -1.9565e+02 -2.4224e+02
-l.OlOOe-Ol 3.2152e-01 -2.3626e-02 -5.2255e+Ol -4.8502e+Ol -4.2299e+O1

5.0603e+00 4.0275e-01 -3.8818e-01 6.9366e401 -1.1341e+02 -1.2071e+02

4.5223e+00 -3.4922e+00 1.8122e-02 -5.3946e+O1 -2.1608e+O1 -1.5353e+O1

-3.8990e+00 -2.5071e+00 5.1219e-01 /.8527e+00 -3.4635e+Ol -3.5348e+O1

-2.2728e+Ol 6.1784e+00 9.5196e-01 -1.4194e+Ol -6.7545e+00 -5.1031e+00

1.4122e+O1 8.7487e+00 -1.6967e+00 2.4494e+00 -1.2916e+O1 -1.3127e+O1

4.9965e+O1 -1.7175e+O1 5.0142e-01 1.15"5e+00 -1.3352e+00 -1.4601e+00

-9.5020e+O1 2.1892e+O1 1.0389e+O1 2.8333e+00 -2.0479e+00 -2.3598e+00
6.1890e+O1 -1.2681e+02 6.6685e+00 -1.1049e+00 -3.9118e-01 -2.6334e-01

9.9712e+00 -1.9078e+O1 -1.4357e+02 -1.1957e-01 3.2707e-01 3.3898e-01

1.1827e-01 -3.3412e-01 2.3620e-02 -3.6424e-02 -1.9965e+00O 1.5995e-0i

3.4434e+00 1.0399e+00 -3.3733e-01 -1.5021e+00 -1.7400e+00 -2.6733e+00

-4.7831e+00 -7.1415e-01 3.9905e-01 -1.0712e+00 2.2889e+00 -l.4713e+O1

-2.5074e+00 -1.836le-O1 1.9103e-01 -1.9232e-01 8.9650e-01 -1.5627e+O1

-9.2095e-01 4.9337e-01 1.6779e-02 2.9619e-01 -3.5656e-01 -6.6464e-01

7.6436e-02 -1.0758e+00 9.7119e-02 -7.1159e-01. 1.2877e+00 -8.3136e+00

-9.4065e-01 1.2001e-O1 5.3684e-02 2.2932e-02 1.1616e-01 -3.8392e+00
2.2512e-01 2.7045e-01 -4.1326e-02 1.8364e-01 -3.8875e-01 3.4413e+00

2.6923e-01 -2.6170e-01 6.2769e-03 -1.5060e-01 2.4093e-01 -8.2107e-01

-3.5903e-01 3.952le-O1 -1.2770e-09 2.4407e-01 -3.8251e-O1 1.4705e+00

5.5418e-02 -7.7786e-02 3.5689e-03 -5.2288e-02 7.8130e-02 -3.6707e-01

1.4788e-02 -5.0093e-02 3.7449e-03 -3.1193e-02 5.7132e-02 -3.4273e-01

-8.6209e-02 2.0978e-03 5.7673e-03 -2.4991e-03 2.0851e-02 -4.2393e-01

3.0370e-03 -6.2893e-03 3.8849e-04 -4.6699e-03 6.7562e-03 -3.6901e-02
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Columns 19 through 24

-2.8169e+00 -4.4292e+00 2.5190e+00 -2.6330e-01 1.5369e-01 -1.9085e+00

-3.5970e+00 -8.8914e-02 3.6727e+00 -1.1671e+00 1.1007e+O0 -4.9087e-01

-2.6254e+O1 -2.0887e+O1 2.5148e+O1 -5.4978e+00 4.7458e+00 -1.0658e+01

8.7045e+O1 1.4674e+02 -7.7029e+O1 6.6623e+00 -3.1450e+00 6.2425e+O1

1.4443e+02 1.9497e+02 -1.3179e+02 1.8295e+O1 -1.3100e+Ol 8.6622e+O1

1.5952e+01 -2.3194e+O1 -1.8221e+O1 8.6966e+00 -8.7138e+00 -6.0691e+00

6.1686e+O1 3.3636e+O1 -6.0354e+O1 1.5222e+01 -1.3659e+O1 1.9644e+O1

3.2024e+00 -2.4400e+O1 -5.2758e+00 4.6927e+00 -4.9571e+00 -8.1206e+00

1.7142e+O 4.1569e+00 -1.7197e+O1 5.0048e+00 -4.6390e+00 3.6444e+00

1.3408e+00 -6.4030e+00 -1.8965e+00 1.3957e+00 -1.4560e+00 -2.0670e+00

6.3315e+00 1.3305e+00 -6.3686e+00 1.8791e+00 -1.7467e+00 1.2745e+00

7.6968e-01 5.5234e-01 -7.4218e-01 1.7013e-01 -1.4888e-01 2.9148e-01

1.3152e+00 1.3325e+00 -1.2364e+00 2.3270e-01 -1.9124e-01 6.3395e-01

4.1646e-02 -5.0056e-01 -8.3625e-02 8.8378e-02 -9.4238e-02 -1.6967e-01

-1.6766e-01 -6.0088e-02 1.6661e-01 -4.6050e-02 4.2216e-02 -4.2438e-02

-7.3858e-02 5.4248e-02 8.0145e-02 -3.2383e-02 3.1757e-02 9.4644e-03

1.2795e+00 4.3523e-01 -1.2763e+00 3.5565e-01 -3.2666e-01 3.1595e-01

1.5508e+O1 9.3482e-01 -1.4353e+01 4.5759e+00 -4.2979e+00 2.1484e+00

-4.5349e+O1 -9.8406e+00 1.0983e+02 -2.5846e+O1 2.4917e+O1 -1.5217e+O1

-1.2548e+00 -1.5613e+O1 -7.2403e+00 1.2733e+00 1.7900e+00 -1.4103e+O1

-7.4415e+O1 5.5042e+O1 -1.8958e+02 1.4305e+02 -1.6158e+02 7.4043e+O1

-2.2661e+O1 -1.3867e+O1 -6.3472e+O1 -4.5635e+O1 1.7203e+02 -5.2529e+O1

1.7982e+O1 -1.1310e+Ol 1.6003e+02 -1.0863e+02 -5.1421e+O1 1.9684e+O1
-2.8087e+00 1.5640e+01 -9.0324e+01 4.0505e+01 5.3125e+01. -6.7007e+0-1

6.0983e+00 -2.2100e+O1 1.3275e+02 -4.7354e+O1 -7.4804e+01 1.7661e+02

-1.7819e+00 4.1876e+00 -2.5282e+O1 4.8131e+00 1.9246e+O1 -3.814!e+O1

-1.8477e+00 2.5316e+00 -1.7125e+01 5.4035e-01 1.4710e+01 -2.4872e+O1

-2.7233e+00 -8.2321e-01 -3.6217e+00 -8.5471e+00 5.9972e+00 1.1996e+OC

-1.9364e-01 3.2615e-01 -2.0869e+00 1.8733e-0i 1.7541e+00 -3.2227e+00
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Columns 25 through 29

7.6745e-01 3.9425e-03 -4.4244e-01l -2.4640e-01 -3.0173e-02

1.2606e+00 -2.5128e-01 -2.1089e-03 5.5342e-02 -1.8258e-02

8.1808e+00 -9.0223e-01l -2.0616e+00 -9.4110e-01 -2.0696e-01

-2.3217e+Ol -5.7644e-01 l.4670e+O1 8.2701e+00 9.6831e-Ol

-4.0969e+Ol 1.2770e+00 1.9437e+Ol 1.0498e+Ol 1.4301e+00

-6.7799e+00 2.2004e+00 -2.3756e+00 -1.8131e+00 -4.9158e-03

-2.OOO0e+Ol 2.8308e+00 3.2828e+00 1.1850e+00 4.3004e-01

-2.3565e+00 1.3508e+00 -2.4731e+00 -1.6762e+00 -7.2878e-02

-5.8195e+00 1.0256e+00 3.8750e-01 -1.5636e-02 l.0061e-O1

-7.9439e-01 3.9001e-O1 -6.4995e-01 -4.4838e-01 -1.6629e-02
-2.1598e+00 3.8825e-01 1.2241e-O1 -1.9394e-02 3.6413e-02

-2.4286e-01 2.9213e-02 5.4373e-02 2.3603e-02 5.8488e-03

-3.9539e-01 3.2021e-02 1.3221e-Ol 6.6164e-02 1.1409e-02

-3.9883e-02 2.6004e-02 -5.0690e-02 -3.3977e-02 -1.6150e-03

5.5939e-02 -9.1366e-03 -5.7545e-03 -1.1385e-03 -1.0547e-03

2.8776e-02 -7.7507e-03 5.6167e-03 4.8600e-03 -1.7207e-04

-4.2090e-Ol 7.0974e-02 4.1538e-02 7.0883e-03 7.9756e-03

-4.9759e+00 9.7110e-01 6.5646e-02 -1.8196e-01 7.45CSe-02

3.1196e+Ol -5.9282e+00 -9.0624e-01 8.3131e-J. -4.9034e-01.
5.1872e+00 1.8317e-01 -3.14!7e+00 -1.7869e+00 -2.0083e-01.

-1.3929e+02 2.5207e+Ol 3.1780e+00 -3.8659e+00 2.0019e+00

1.0694e+02 -1.9838e+Ol -1.1774e-01 4.3850e+00 -1.4247e+00

-1.0021e+02 2.2620e+Ol -6.1728e-01 -5.5200e+00 1.6696e+00

5.1785e+Ol -l.6217e+O1 -2.1071e+Ol -7.6674e+00 -2.9695e4-00

-3.0613e+02 9.6944e+O1 6.6540e+00 -1.9641e+J1 9.3531e+00O

1.0064e+02 -5.7549e+O1 3.7812e+Ol 2.9900e+Ol -7.8291e+00

7.8071e+Ol -8.9044e+Ol -7.2702e+Ol -8.3855e+Ol -8.5556e+00

-3.2832e-01 -5.9329e+00 -4.0260e+00 -1.4661e+02 1.1159e+00

9.8153e+00 -9.4011e+00 -l.7763e+'Ol -8.7322e+00 -1.3177e+02
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bcgf =

-1.0822e+O1 -2.7878e+00

6.8583e-01 -4.1887e+00

-4.7724e+O1 -2.8286e+O1

3.6012e+02 8.5027e+O1

4.7115e+02 1.4656e+02

-6.4500e+O1 2.1242e+O1

7.1903e+O1 6.8206e+O1

-6.4391e+O1 6.4952e+00

6.4582e+00 1.9540e+O1
-1.7025e+O1 2.2886e+00

1.8515e+00 7.2405e+00

1.2428e+00 8.3604e-01
3.1364e+00 1.3847e+00

-1.3148e+00 1.0517e-01

-1.1379e-01 -1.8892e-01

-2.1182e-01 -1.4546e-01
8.7699e-01 6.0226e-01

-7.4043e-01 -5.0848e-01

-2.6335e-01 -1.8086e-01

2.7014e-01 1.8552e-01

-6.9940e-01 -4.8031e-01

2.4769e-02 1.7010c-02

1.8978e-01 1.3033e-01

-1.5582e-01 -1.0700e-O1

2.3802e-01 1.6346e-01

-4.7719e-02 -3.2771e-02

-3.1925e-02 -2.1924e-02

-3.5525e-03 -2.439 7e-03
-3.9408e-03 -2.7063e-03
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ccgf =

Columns I through 6

0 0 0 0 0 0
0 0 0 0 0 0

Columns 7 through 12

0 0 0 0 0 0
0 0 0 0 0 0

Columns 13 through 18

0 0 0 -8.4999e-01 -1.5173e-01 -5.4154e-02
0 0 0 -1.2095e-01 1.8226e+00 1.8269e+00

Columns 19 through 24

-3.7507e-02 -3.8748e-01 6.6203e-03 4.5526e-02 -5.1326e-02 -1.4025e-01
-8.6488e-01 -8.4670e-02 8.7789e-01 -2.7117e-01 2.5437e-01 -1.4015e-01

Columns 25 through 29

-6.3435e-03 1.5178e-02 -2.9105e-02 -2.5113e-02 -1.5979e-03
2.9992e-01 -5.7504e-02 -6.9062e-03 9.1004e-03 -4.6205e-03

dcgf =

0 0
0 0
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Closed loop state space representation of the H,

limited-performance X-29 (unbalanced plant used in calculations).

acgflim =

Columns I through 6

-1.0402e-02 -5.8688e-05 -1.0935e-01 1.0846e-03 9.5729e-02 -2.1473e-02

4.7514e-05 -1.0127e-02 -2.2341e-02 2.5275e-01 7.5480e-02 -6.2276e-02

-1.0953e-01 1.7080e-02 -2.1014e+O1 -2.1657e+O1 2.9586e+O1 -8.7074e+00

1.1830e-01 4.6756e-03 5.4776e+Ol -4.9923e+O1 2.0305e+Ol 2.4992e+Ol

1.0112e-01 2.5760e-02 3.0471e+O1 -9.6706e+Ol -7.0361e+O1 5.0851e+O1

-7.0719e-03 7.5703e-02 -2.4741e+00 -1.8064e+00 -2.0296e+Ol -1.8520e+O0

-1.1890e-02 -4.0375e-03 -4.3794e+00 9.4786e+00 1.5457e+Ol 3.0890e+00

3.5848e-02 -9.2905e-03 1.3787e+O1 -2.9232e+O1 -5.0189e+O 1.1314e+Ol

7.8006e-03 1.6081e-02 2.7372e+00 -6.6157e+00 -i.1414e+O1 -7.6888e+00

6.9880e-03 -1.4086e-02 2.7883e+00 -5.6558e+00 -8.4502-+00 8.3607e+00

3.6963e-03 -2.3286e-03 1.4203e+00 -3.0586e+00 -4.8787e+00 1.8586e+00

9.8035e-04 -2.6757e-03 3.9874e-01 -7.6819e-01 -1.1181e+00 1.4626e+00

-9.9671e-04 -1.2236e-03 -3.6218e-01 8.6485e-01 1.4612e+00 3.7979e-01

4.9526e-04 -6.0858e-04 1.9331e-01 -4.0393e-01 -6.2616e-01 3.8745e-01

9.9360e-05 -1.1607e-04 3.8715e-02 -8.1164e-02 -1.2611e-01 7.4870e-02

0 0 0 0 0 0

0 0 0 0 0 U

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

-5.5647e+03 -2.5519e+03 -3.2170e+04 3.2203e+04 3.5087e+04 -1.3450e+04

-5.6119e+03 2.5455e+03 -2.7388e+04 -3.1437e+04 1.6463e+04 1.9671e+03

-1 9979e+05 9.0622e+04 -9.7503e+05 -1.1191e+06 5.8610e+05 7.0029e+04
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Columns 7 through 12

-4.0275e-03 -2.6915e-02 3.4546e-03 5.3706e-04 -3.6531e-03 1.0496e-03

-2.4278e-02 5.1044e-02 2.2025e-02 -2.0440e-02 2.555le-03 2.5566e-03

-1.7350e+00 -9.6190e+00 1.5835e+00 -1.1432e-01 -1.3381e+00 4.3285e-01

8.9719e+00 -1.8751e+O1 -8.5052e+00 8.1165e+00 -9.6598e-01 -1.0186e+00

8.5586e+00 2.7161e+O1 -8.5873e+00 3.9686e+00 4.1757e+00 -1.9185e+00

-1.2731e+O1 1.4809e+00 1.1718e+Ol -7.8909e+00 -1.2714e+00 1.6320e+00
-7.5102e+00 -1.1428e+O1 1.0646e+O1 -1.2192e+O1 -2.8839e-01 1.8363e+00

4.9757e+O1 -1.1776e+02 4.7311e+Ol 5.8958e+O1 -2.1270e+01 -5.3409e-02

5.8087e+00 -8.6183e+O1 -1.2232e+Ol 2.1820e+O1 4.0286e-01 -3.2960e+00

8.8626e+00 -6.3838e+O1 -6.7146e+00 -3.6223e+O1 2.1952e+Ol 8.7173e+00

4.3397e+00 -2.3127e+O1 -4.3150e+00 -3.3307e+O1 -1.7274e+O1 6.0655e+00
9.4872e-01 -7.3025e+00 3.8876e-01 -1.1983e+O1 -1.1844e+O1 -6.8722e+O1

-1.3423e+00 6.0171e+00 2.5122e+00 2.5206e+00 7.0285e+00 1.3970e+O1

5.5179e-01 -3.4240e+00 -3.5627e-01 -4.1849e+00 -4.9408e+00 -5.8083e+Ol

1.1123e-01 -6.8505e-01 -7.5761e-02 -8.2576e-01 -9.9156e-01 -9.0062e+00

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

-4.1178e+03 -7.6282e+02 3.6829e+03 -2.4198e+03 -6.5185e+02 5.9980e+02

1.9746e+03 -1.3742e+04 -1.8474e+03 2.7284e+03 -1.3132e+03 -3.8383e+0l
7.0297e+04 -4.8921e+05 -6.5768e+04 9.7131e+04 -4.6750e+04 -1.3665e+03
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Columns 13 through 18

8.3492e-04 -5.3511e-04 -8.1760e-05 -5.2019e+00 -1.1241e+00 0

-1.6840e-03 -4.2833e-04 -1.6786e-04 -5.0395e-01 2.3744e+00 0

2.8897e-01 -2.0766e-01 -3.3253e-02 -2.7401e+01 -7.7266e+00 0

6.5715e-01 1.7396e-01 6.7004e-02 2.9927e+01 4.7994e+00 0

-7.0494e-01 7.8492e-01 1.4255e-01 2.6073e+01 2.2229e+00 0

-1.4062e-01 -4.9365e-01 -1.1507e-01 1.2523e-01 -9.1880e+00 0

-5.8267e-01 -4.5585e-01 -1.2596e-01 -3.0793e+00 -1.5243e-01 0

7.5075e+00 -1.7408e+00 -5.7699e-02 8.7351e+00 2.9843e+00 0

1.0924e+00 8.0532e-01 2.2536e-01 2.3598e+00 -1.4722e+00 0

-6.3426e+00 -1.2524e+00 -5.5502e-01 1.3920e+00 2.0218e+00 0

9.2730e+00 -3.9489e+00 -4.7442e-01 8.6600e-01 4.6904e-01 0

-8.7804e-02 5.6209e+01 9.7762e+00 1.7759e-01 3.6550e-01 0

-1.3039e+02 1.4771e+01 1.1042e+00 -2.8039e-01 9.0399e-02 0

5.3211e+01 -4.0347e+01 -1.4513e+01 1.0853e-01 9.7591e-02 0

1.3336e+01 -1.5833e+01 -1.4561e+02 2.1926e-02 1.8874e-02 0

0 0 0 -4.1810e-01 9.9600e-01 -2.2690e-02

0 0 0 5.4740e+00 -3.4240e-01 2.5850e+00

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1.1078e+01 -1.9609e+02 -4.2799e+01 3.5657e+00 1.3365e+00 -1.4790e+03

4.3911e+02 -9.0974e+01 -9.6295e-01 3.7297e+02 1.3980e+02 0

1.5632e+04 -3.2387e+03 -3.4281e+01 1.3278e+04 4.9769e+03 0
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Columns 19 through 24

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

-1.2130e-01 -1.9480e-02 -9.4930e-04 4.4270e-05 -6.7120e-05 1.4510e-06
-1.3860e+00 -1.0580e+00 3.8980e-03 -1.1640e-02 -6.3970e-03 -2.5090e-04

0 0 1.O000e+00 0 0 0
0 0 0 1.O000e+00 0 0
0 0 0 0 1.0000e+O0 0

0 0 0 0 0 1.0000e+00
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 -1.1430e+02 0 0 -2.5290e+00

-1.4910e+03 0 0 -1.1490e+02 0 0
0 -5.3020e+04 0 0 -1.8160e+03 0
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Columns 25 through 29

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

-2.1620e-05 -3.5400e-06 0 0 0

-5.3620e-04 -2.9120e-04 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

l.O000e+O0 0 0 0 0

0 1.O000e+O0 0 0 0

0 0 l.O000e+04 0 0

0 0 0 l.O000e+04 0

0 0 0 0 l.0000e+04

0 0 -2.6970e+02 0 0

-2.5360e+00 0 0 -2.7010e+02 0

0 -1.7900e+01 0 0 -6.0530e+02
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bcgf lim=

5.2019e-K'C 1.1241e+00
5.0395e-01 -2.3744e+00
2.7401e+01 7.7266e+00

-2.9927e+01 -4.7994e+00
-2.6073e+01 -2.2229e+00
-1.2523e-01 9.1880e+00
3.0793e+00 1.5243e-01

-8.7351e+00 -2.9843e+00
-2.3598e+00 1.4722e+00
-1. 392 0e+00 -2 .02 18e+00
-8.6600e-01 -4.6904e-01
-1.7759e-01 -3.6530e-01
2.8039e-01 -9.0399e-02

-1.0853e-01 -9.7591e-02
-2. 1926e-02 -1. 8874e-02

0 0
0

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

-3.r-57e+00 -1.3355e+CO
-3.7297e+02 -1.3980e+02
-1.3278e+04 -4.9769e+03
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ccgflim =

Columns 1 through 12

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

Columns 13 through 24

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

Columns 25 through 29

0 0 0 0 0

0 0 0 0 0

dcgflim =

0 0
0 0
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